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Existence Proofs 

Fred Richman 

[If] a proof convinces you that there is a root of an equation (without giving 
you any idea where)-how do you know that you understand the proposition 
that there is a root? Ludwig Wittgenstein 

The proposition that mathematics is grounded on computation would seem to be 
quite uncontroversial; the only people I have heard argue against it are mathemati- 
cians. By "mathematics" I mean pure mathematics-theorems and proofs. Many 
pure mathematicians think that they engage in a high art form that is incompatible 
with strong links to computation, the nerdy province of bookkeepers, statisticians, 
and calculators. This attitude goes hand in glove with the practically unquestioned 
acceptance of nonconstructive existence proofs in modern mathematics. 

Constructive mathematicians are unsatisfied by nonconstructive existence proofs: 
proofs that attempt to convince you of the existence of a number, or of some more 
complicated mathematical object, without giving any method for computing it. The 
difference between constructive mathematics and classical mathematics is that 
when a constructive mathematician says there is a number that satisfies a given 
equation, or has some other property, he has an algorithm in his pocket for 
computing that number. The pocket of a classical mathematician, who makes the 
same statement, might contain only a derivation of a contradiction from the 
assumption that every number fails to have the property. 

The quotation from Wittgenstein [12, p. 2821 at the head of this article suggests 
that the peculiar nature of such a proof should cause us to reconsider the meaning 
of the proposition it proves. Did we really understand what was meant by "there is 
a root" if we can be convinced of its truth by an argument that does not provide a 
method for finding a root? What are these numbers that exist without our being 
able to construct them? I am reminded of the Nobel laureate Eugene Wigner's 
response to the question of whether there are any inherently unknowable laws of 
physics: he said, "I don't know of any." 

I will illustrate the idea of a nonconstructive proof by several examples. The 
first is of a theorem that admits a celebrated constructive proof (the Euclidean 
algorithm). Many textbooks give both proofs, but the constructive one is usually 
presented as a method of computation rather than a proof. 

Theorem 1. There exist integers s and t such that 437s + 323t is positive and divides 
437 and 323. 

Of course the numbers 437 and 323 are not special; I choose them to make sure 
we see immediately which are the constants and which are the variables. It follows 
immediately from the theorem that the number 437s + 323t is the greatest 
common divisor of 437 and 323. Here is a nonconstructive proof of the theorem. 
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Proot Consider the set of positive integers 


S = { d :  d > 0 and d = 437s + 323t for some s and t}. 


The set S is nonempty because 437 and 323 are clearly in it. Therefore, by what is 
often called the "well-ordering principle," there is a least element do  of S. As 
d, E S we can write do  = 437s, + 323t,. The division algorithm enables us to 
write 437 = qd, + r, where 0 5 r < do. If r > 0, then r = 437(1 - qs,) + 
323(-qt,) is in S. But d, is the smallest element of S, so r = 0. Thus do  divides 
437; similarly do divides 323. rn 

That was a proof in the spirit of the Wittgenstein quotation. What are these 
integers s and t that we have shown to exist? We have not been given a clue as to 
how to find them. They were constructed by choosing the smallest element of the 
set S. But how do we find that smallest element? What is the basis for the 
well-ordering principle? 

A proof of the well-ordering principle, as applied to a set S of positive integers 
that contains 323, might go as follows. If 1 E S, then 1is the smallest element of S. 
If 1 @ S, but 2 E S, then 2 is the smallest element of S. If 1 @ S and 2 @ S, but 
3 E S, then 3 is the smallest element of S. We can write this as a computer 
program as follows: for i = 1 to 323 do if i E S return i. 

What does this proof of the well-ordering principle prove? It proves that a 
nonempty detachable subset of the positive integers has a least element. A subset 
S of a set X is called detachable if you can tell (there is an algorithm for telling) 
whether or not any given element of X is in S. The problem with the set S in the 
proof of Theorem 1 is that we have not established that it is detachable; for 
example, how do we decide whether or not 1 E S? In fact S is detachable, but to 
prove that we usually invoke Theorem I!  

A constructive proof of Theorem 1 might go like this. Consider the following 
table. 

Each row represents values of d, s, and t such that d = 437s + 323t. This is clear 
for the first two rows. Each subsequent row R,,, is computed from the previous 
two rows R,-, and R, by setting R,,, = R,-, - m,R,. We choose the m, so as 
to make the first entry of R,,, positive, and as small as possible. The first entries 
of the rows must decrease, unless the first entry of R, divides the first entry of 
R,-,, in which case we stop. The equation d = 437s + 323t is inherited by R,,,, 
from R, and R,-,. Moreover, as R,-, = m,R, + R,,, , any number that divides 
the first entries of two consecutive rows, divides the first entry of the row before 
them. So 19 divides all the numbers above it; in particular, 437 and 323. 

Errett Bishop, the mathematician most responsible for the recent renaissance of 
constructive mathematics, formulated four principles of constructive mathematics 
in [2]: 

(A) Mathematics is common sense. 
(B) Do not ask whether a statement is true until you know what it means. 
(C) A proof is any completely convincing argument. 
(D) Meaningful distinctions deserve to be maintained. 
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Constructivists think that a proof of the existence of a mathematical object should 
tell you how to construct that object; this follows from their belief that other 
interpretations of the phrase "there exists," in a mathematical context, are either 
incomprehensible, or can be formulated in more descriptive ways (principles B 
and D). 

These are controversial, even revolutionary, ideas. Constructivists want to make 
fundamental changes in the way we view mathematics; they want to change the 
rules by which the game of mathematics is played. But most people aren't 
interested in changing the rules. For one reason, most people like the rules as they 
are. In fact, successful mathematicians have a vested interest in keeping the rules 
as they are. Why should a champion chess player be interested in changing the 
rules of chess? Another reason is that, after all, aren't the present rules of 
mathematics correct? How can there be any serious alternatives? 

Constructive mathematics is not just an idea but a substantial body of results. In 
[I] Bishop developed much of analysis along constructive lines. This classic book 
has been revised and extended [3]. A corresponding constructive development of 
algebra was carried out in [9]. For expository articles on constructive mathematics 
see [41, El, [81, [lo], and [I l l .  

Let's look at another example: consider the decimal expansion 
T = 3.1415926535897932384626433832795.. . . 

This decimal expansion suits our purposes because it is a familiar example of a 
computable infinite sequence, and very little is known about it. The theorem I 
want to consider says that 

Theorem 2. There is a digit that appears infinitely often in the decimal expansion of n-. 

How can we establish such a theorem in light of the fact that so little is known 
about the decimal expansion of T? As you may have already realized, the proof 
that I have in mind gives you no idea as to which digit appears infinitely often. It is 
a genuine indirect proof, as opposed to the usually cited examples of proof by 
contradiction-proofs that 6 is not rational, or that the number of primes is not 
finite-where the very meaning of the theorem requires that a contradiction be 
derived. 

Let's look at a proof of this theorem. 

Proof: Suppose each digit occurs only a finite number of times in the decimal 
expansion of T: so 0 occurs no times, 1occurs n,, times, etc. Then compute 

no + n, + ... S n ,  + 1 

places in the decimal expansion of T. But there are only no + n, + ... f n ,  digits 
available to fill up these places, which is absurd, so our original assumption that 
each digit occurred only finitely many times must be false. H 

What has been proved? Let Pi denote the proposition that the digit i appears 
(only) a finite number of times in the decimal expansion of n-. Then we have 
shown that the proposition 

A = Poand P, and ...and P, 

leads to a contradiction. That is, we have proved the negation A of the 
proposition A. What we wanted to show, on the other hand, was that Pi holds1 

for some digit i, that is we wanted to prove the proposition 
B =  1 P o o r  7P1or . . . o r  lP9. 
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According to the usual laws of logic (DeMorgan's law), B is the same as A,  
which we have proved. The constructivist grants that 1A has been proved, but 
denies that B has been proved. He wants to draw a distinction between B, which 
asserts the existence of a digit with the property 1P ,  and 1A, which merely says 
that it is impossible for all digits to have the property P (meaningful distinctions 
deserve to be maintained). So we see what the rules are that constructivists want 
changed: no less than the rules of logic. 

The controversy over nonconstructive techniques in mathematics goes back at 
least to the beginning of this century. David Hilbert and L.E.J. Brouwer were the 
principal participants in this controversy. Brouwer founded the philosophy of 
mathematics called intuitionism [6]. Most constructive mathematicians, of whatever 
school, consider Brouwer to be a spiritual ancestor. Hilbert was the foremost 
mathematician in Germany, and possibly in the world, in the early twentieth 
century. Many American mathematicians trace their mathematical lineage to 
Hilbert because of the German mathematicians who settled in the United States 
prior to World War 11, and the Americans who went to Germany in the early part 
of the century to study with Hilbert and his students. 

Hilbert used nonconstructive techniques to solve a well-known problem con- 
cerning the construction of a finite set of polynomials with certain properties. The 
problem had been solved by P. Gordan, for the case of polynomials in two 
variables, by explicitly exhibiting the finite set of polynomials. Hilbert solved the 
general case, but his proof gave no clue how to construct the required polynomials. 
This appears to be the first use of a nonconstructive proof to establish the 
existence of mathematical objects that were expected to be constructed explicitly. 
The reaction of Gordan, perhaps in reference to proofs of the existence of God, 
was "That's not mathematics, that's theology." 

Since then, Hilbert's approach has so dominated mathematical thinking that 
alternatives are not considered seriously. But Hilbert and Brouwer had one thing 
in common: they both thought that nonconstructive techniques needed justifica- 
tion. Brouwer thought that the answer was to use only constructive techniques. 
Hilbert did not want to abandon his nonconstructive techniques; instead, he 
proposed to show that you couldn't get into trouble using them. 

Hilbert's program was to show that if a theorem proved by nonconstructive 
means predicted the result of a computation, then it would predict the correct 
result. Thus even if the smallest digit that occurred infinitely often in the decimal 
expansion of n- were just a fiction, we could treat it as reality and still never say 
anything that was verifiably false. An analogy is the introduction of a square root 
of -1, which in some sense is simply a fiction, but it helps us to prove things 
about, and to discover properties of, the numbers that we actually believe in. 

Of course the proof that you don't get into trouble using nonconstructive 
techniques must use only constructive techniques in order to be convincing. 
Hilbert's program was utterly demolished by Kurt Godel, who showed in the 
thirties that not only couldn't you prove such a thing constructively, but you 
couldn't even prove it using only the nonconstructive techniques that you were 
attempting to justify. Remarkably, this had no effect on the acceptability of 
nonconstructive techniques! 

My final example of a nonconstructive existence proof comes from the theory of 
computable functions. That theory was developed to clarify the idea of what it 
means for a function to be computable. This is not an idea that would occur to a 
constructivist, for whom computability is part of the intuitive idea of a function: if 
there exists y such that f(x) = y, then we must be able to construct that y if we 
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are given x. A constructivist can certainly entertain the idea of looking at a 
restricted class of functions that are computed in a special way, but would be 
unlikely to call that class "the computable functions." 

In the theory of computable functions, a function from the natural numbers 
0,1,2,.  . . to the natural numbers is called computable if there exists a computer 
program to compute it. It is well known that, for all but the most anemic 
programming languages, this notion is independent of the particular language 
used. In the standard theory, nonconstructive proofs of the existence of a program 
are allowed. 

It will be convenient to abbreviate the following statement by P,,. 

P, :There are (at least) n consecutive 4's in the decimal expansion of .rr 

Consider the function f defined by setting f(n) = 1if P, and f(n)  = 0 otherwise. 
Clearly f(0) = f(1) = 1. I asked my computer to give me 100 places of .rr, and I see 
that there are 4's in places 59 and 60 (if I haven't miscounted), so f(2) = 1. But 
what, for example, is f(12)? No one knows; no one even knows of a computation 
that would resolve this question. If you compute a billion places in the expansion 
of n- you might discover that f(12) = 1, but no such computation would tell you 
that f(12) = 0. A constructivist would say that we have not defined f for all n 
because we have not shown how to compute f(n)  in general. 

The orthodox view, however, is that not only have we defined f for all n, but 
that f is computable! To verify the first claim, consider the set 

G = {(n ,  i )  : i = 1and P,, or i = 0 and not P,}. 

This is the graph of f .  To show that f is defined at n means to show that there 
exists i in the set {0,1) so that (n, i)  is in G. It is clear that if (n, 1) is not in G, 
then (n, 0) is in G, because either statement is equivalent to denying P,. But this 
constitutes a nonconstructive proof that there exists i for which (n, i) is in G, as it 
is impossible that neither (n, 1) nor (n, 0) is in G. 

So suppose that f is defined for all n-the constructivist will have to imagine 
that he can consult an oracle to determine the value of f(n). Now we want to show 
that there is a program that computes f .  This requires a second nonconstructive 
argument. The gimmick is that we do not have to produce the program; we merely 
have to show that f cannot be different from each computable function. 

Consider the following collection of functions, one for each natural number m: 

together with the function g, which is identically equal to 1. Certainly g, is 
computable, and g, is computable for each finite m: the program simply com- 
pares n with the fixed number m and returns 1 or 0 as appropriate. Suppose 
f(n) = 0 for some n. Let m be the first place where f(m) = 0. Then f = g, 
because f(x)  2 f(y)  whenever x 4 y. Thus if f # g, for each finite m, then f(n)  
cannot be 0 for any n, so f = g,. Therefore f cannot be different from each 
computable function. That's as far as a constructivist can go, even with an oracle 
that tells him what f(n) is. 

The final (nonconstructive) step in the argument is to apply an infinite version 
of the DeMorgan's law used in the second example. We have shown that the 
proposition 
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is false. We conclude that the proposition 

is true-if a collection of propositions cannot all be false, then one of them is true. 
So there exists rn such that f = g,, whence f is computable. 

I will let Wittgenstein have the last word. Georg Cantor laid the foundation for 
the theory of transfinite sets upon which twentieth century mathematics is based. 
Hilbert [7], referring to objections of the intuitionists, said "No one shall drive us 
out of the paradise which Cantor created for us." Wittgenstein [13, p. 1031 later 
wrote in response to this, 

I would say, "I wouldn't dream of trying to drive anyone out of this paradise." 
I would try to do something quite different: I would try to show you that it is 
not a paradise-so that you'll leave of your own accord. I would say, "You're 
welcome to this; just look about you." 
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