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The Set of Differences of a Given Set 

Andrew Granville and Friedrich Roesler 

1. INTRODUCTION. A central problem of combinatorial geometry and additive 
number theory is to understand the set of sums or differences of a given set of 
vectors. For example, given a set of m arbitrary vectors A, how big is the set 
A + A := {a + b: a ,  b E A}, or the set A - A  := {a - b: a ,  b E A}? By packing 
the vectors close together on a lattice one can make these sets small: for example, 
if A = {a,2a, 3a, .  . .,(m - l)a,  ma} then A + A and A - A  both have 2m - 1 
elements. On the other hand, if the elements of A are appropriately spread out 
then we can make these sets large: for example, if A = {2', 2', . . . ,2"} then 
A + A  has (m2 + m)/2 elements, and A - A  has m2 - m + 1elements. 

It may be that the sizes of A - A  and A + A are quite different: For example 
if A is the set of positive integers smaller than lok  that have only digits 1, 2, and 4 
in their decimal expansions then A has 3k elements and A + A  has 6k elements, 
far smaller than A -A ,  which has 7k elements. Similarly, one can construct A so 
that A + A is far larger than A -A, for example by taking A = C;:; b,10OZ 
where each b, is allowed to take any value from the set {0,2,3,4,7,11,12,14}; see 
[7] and [8] for more details. For the more natural example A = {I2,2', . . . ,n2}it 
can be shown, though with some difficulty, that A - A  is about logKn times as 
large as A + A, for some constant K > 0. 

Some time ago it was realized that if either A + A or A - A  is very small then 
A must have some special structure: Indeed, Freiman [5] (but see [9]) showed that 
A must then be a subset of a small part of a lattice. There have recently been 
several striking and elegant advances in this area of combinatorial additive number 
theory; see [I], [2], and [6]. Moreover Gowers has recently given a spectacular 
application of Freiman's theorem, which proves the first reasonable upper bounds 
in SzemerCdi's theorem: Given a positive integer k and a S > 0, every subset of 
{I,2,. . .,n} with at least Sn elements contains a k-term arithmetic progression, 
provided n > N(k, 6). Gowers gave the upper bound [13] 

for some constant c, a substantial improvement over bounds known previously. 
Seemingly unrelated to all this is 

Graham's conjecture. For any set A of m distinct positive integers, we have 

a 
max 2 m.  

a ,  LISAgcd(a, b) 

Equality holds only in the following cases: 

A = {2,3,4,6}. 
A = { k, 2k , .  . . ,mk} for some integer k. 
A = {1/1,1/2, . . ., l/m} for some integer 1divisible by the least common multi-
ple of 1,.  . ., m. 
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This old chestnut has recently been proved correct in an outstandingly original, 
though long and complicated, paper by Balasubramanian and Soundararajan [3]. 
Their method involves very careful consideration of prime divisors of linear 
combinations of numbers from A. In fact Graham's conjecture had been elegantly 
proved for sufficiently large m by Szegedy [lo] and Zaharescu [I21 a decade 
earlier, but it took a wealth of new ideas to extend their result to all integers m. 

In search of a more combinatorial proof, one might approach Graham's conjec- 
ture by asking whether there are at least m distinct integers in the set {a/gcd(a, b): 
a, b EA}? If SO, Graham's conjecture would follow easily. Unfortunately the 
answer is "no," since for 

A = {2,3,4,6,9,12,18} ( I )  

one gets the set {I, 2,3,4,6,9}. 

Unsolved problem. For each integer m 2 1, what is the least number of integers one 
can haue in the set {a/gcd(a, b): a, b E A}, where A is a set of m distinct positiue 
integers? 

One can relate this problem quite closely to the vector questions asked at the 
beginning of the Introduction: 

Let p,,  p,, .. . ,p, be the set of primes that divide integers in A. Write each 
a EA in the form a =pqlp;2 ... p,anand associate to it the vector a = (a,, . . . ,a,); 
note that distinct integers are associated with different vectors. Now, given 
a, b E A, evidently min{a,, b,} is the ith component of the vector associated with 
gcd(a, b). Thus a, - min{ai, b,} = max{O, a, - b,} is the ith component of the 
vector associated with a/gcd(a, b); we call this vector S(a, b). Thus we have: 

Unsolved problem (restated). For each integer m 2 1, what is the least number of 
vectors one can haw in the set S(A) := {S(a,b): a, b E A}, where A is a set of m 
distinct vectors? 

Remark. We can claim that this is a restatement of the first unsolved problem only 
if we state that the vectors in A all have non-negative integer entries. However, 
through a few minor technical tricks one can drop that requirement; we leave this 
as a challenge to the reader. 

To get the lower bound I S(A)I 2 m112 in the unsolved problem, we first note 
that, for fixed a E A, the pairs (S(a, b), 6(b, a)) must all be distinct since b = a -
6(a, b) + S(b, a), and so there are no less than m distinct pairs. Thus there are 
either 2 m112 distinct values for {6(a, b) :b E A} or for {6(b, a) :b E A}, else there 
would be less than m distinct pairs (S(a, b), S(b, a)), giving a contradiction. 

One can get a better lower bound for S(A) if A is a set of vectors in the plane: 

Theorem 1. If A c R2 is a set of m 2 1 distinct vectors then 6(A) has at least 
(m/2)'13 vectors. In fact there exists a E A such that there are at least (m/2)'13 
distinct uectors amongst {S(b, a) :a EA}. 

Perhaps such a lower bound holds in higher dimension. We postpone the proof 
of this and other results until subsequent sections. 

The example given in (1) is a translation of the set A = {(x, Y) E Z2 :0 Ix, y 
4 2 , l  4 x + y 4 31, given by Freiman and Lev (taking n = 2, p ,  = 2, p, = 3). 
They generalized this to A = {(x, y) E Z2 :x, y 2 0, L < x + y IU } with L = 

((2m)2/3 - (2rn)lI3)/2 + O(1) and U = ((2m)'13 + (2m)'I3)/2 + O(1). Then 
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S(A) = {(x,y) E Z 2 : x , y  2 0 ,x  + y  < U - L} U {(t,O),(O,t) E Z 2 : 0  2 t 5 U } ,-which has (3/2)(2rn)'I3 elements. Thus the lower bound in Theorem 1 is best 
possible up to a factor of 3 .  2'I3. Moreover from these remarks, combined with 
those directly above the statement of Theorem 1,we obtain the following partial 
result concerning our unsolved problem: 

Theorem 2. If A is any set of m 2 1 distinct vectors with 1 S(A)l minimal, then 
(3/2)(2m)2/3 > IS(A)( 2 m1l2. 

The function a/gcd(a, b) in the unsolved problem is not symmetric in a and b. 
It thus might seem more natural to study the number of distinct values in 
{ab/gcd(a, b)' : a, b EA}. In this case we can prove a best possible result: 

Theorem 3. For any set of natural numbers A,  there are at least IA 1 natural numbers 
in the set {ab/gcd(a, b), :a,  b E A}. 

Remark. We show in Section 3 that the proof of Theorem 4 (which implies 
Theorem 3) can be modified to prove that equality holds only for the following sets 
A: Let q,, q,, . . .,qk be positive rational numbers, with each qi = ri/si f 1 and 
gcd(r,, si) = 1such that gcd(r,s,, rjsj) = 1if i f j. Let S be a subgroup of (Z/2Z),. 
Then A is the set of integers bqjlqi? ... q? where the i, satisfy 1, I i, I u,, for 
some lower and upper bounds I, and u,, with (i,, i,, . . . ,i,) E S ,  and b chosen so 
that these numbers are indeed all integers. 

A simple example is when A = Id :  din} for any positive integer n. A more 
exotic example is A = {md2:dln, m = 1 or b} where squarefree b > 1 divides n. 

We may rewrite the question in Theorem 3 as a problem about sets of vectors: 
The ith component of the vector, d(a, b), associated with ab/gcd(a, b)' 	 is 

a,  + bi - 2min{ai, bi} = I a ,  - b, 1. 
Therefore 

d (a ,b )  = S(a ,b)  + S(b ,a)  = (lal - b  l I , l a 2 - b 2 1 , . . . ,  la, - & I )  
since a - b = S(a, b) - S(b, a). Thus Theorem 3 is equivalent to the following 
result (which we shall prove in the next section): 

Theorem 4. IfA is a finite set of distinct vectors in Rn then D(A) = {d(a, b) :a, b E 

A} has at least as many distinct vectors as A. 

These vector questions may all be thought of as problems about the set of 
distinct differences {A(a, b): a, b E A} for some naturally defined "difference" 
function A between two vectors. Moreover, each of our questions has a number 
theoretic interpretation; the set of values {a - b} corresponds simply to looking at 
all ratios a/b of the corresponding integers. It is perhaps of interest to consider 
other difference functions that relate elementary number theory to vector prob- 
lems, though we have been unable to identify any others that are particularly 
appealing: 

Perhaps the most obvious difference function between two vectors is the 
Euclidean distance, (la, - b, l 2  + la2 - b212+ ... + la, - b, 12)1/2. Unfortunately 
there is no straightforward number theoretic interpretation for the associated 
problem about integers. Moreover any set of orthonormal vectors has the property 
that the set of distances between pairs of vectors is {O, I}. However, Erdos [4] 
restricted his attention to a set A of m distinct points in the plane. He noted that 
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for the points in the k-by-k integer lattice, where k = v'k + 0(1), we have 
#{la - bl :a, b EA} ern/ Jefor some constant c > 0, and asked whether 
this is best possible, up to the value of c? The best result in this direction, due to 
SzCkely [Ill ,  is that there exists some b E A such that #{la - bl :a E A} 2 ~ ' m ~ ' ~ ,  
for some constant c' > 0. 

2. PROOFS OF THE THEOREMS. Although we found several proofs of Theo-
rem 1, we decided to present here the following elegant proof communicated to us 
by Sudakov: 

Proof of Theorem 1 (Sudakov). Let x, be the smallest element of X = 

{x :(x, y) EA}, the x-coordinates of points in A,  and let Y = {y :(x, y) E A}, the 
y-coordinates of points in A. Then S(A) contains points with x-coordinate x - x, 
for each x E X, SO )6(A)1 2 1x1(and therefore we take a to be any element of A 
with x-coordinate equal to x,) . Similarly I S ( A )  2 1Y1. Thus our result is proved 
true unless 1x1, I Y1 < (rn/2),l3, which we now assume. 

We define a series of sets A, = A  2 A, 3 ... 3A,, and then let L ,  be the set 
of lines of A,, that is, the sets of points {(x,y) E A,} for each x E Xi := {X:(x, y) 
E A,}, and the sets of points {(x,y)  E A,} for each y E := {y :(x, y) E A,}. The 
average number of points on each line in L, is ri : = 2 \A,1 / ( \Xi 1 + I 1 ). Suppose 
there is a line in L, that has less than r,/2 points; we obtain the set A,+,  by 
removing the points of that line from the set A,. Notice that r, < r,,,. We 
continue with this process until we reach the set A,, in which every line in L, has 
at least rk/2 2 r1/2 = m/(lXI + IY1) 2 (m/2)'l3 points. 

Let xo be the smallest element of X,. Let yo be the smallest element of 
Yo = {y :(x,, y) E A,}, a set that is the same size as the line {(x,, y ) :  y E Yo} of 
A, and hence has size at least (rn/2)ll3. Let B cA, cA be the union, over each 
y E Yo, of the lines {(x,y) E A,} of L,. Each of these lines contains at least 
(m/2)'13 elements, so that B has at least (m/2)'13 elements. Now S(b, (x,, yo)) = 

b - (xo,yo)  for each b E B, so that these S values are distinct. Therefore 
IS(A>I 2 IS(B>I 2 IBI (and a = (xo,yo)). 

Proof of theorem 4 We use induction on n and then on the size of the set A. If A 
has just one element then D(A) contains only the zero vector, and so has exactly 
as many distinct vectors as A. If n = 1 and A = {a, < a, < a, < ... < a,} then 
(0, a, - a,, a, - a,, . . .,a, - a,} LD(A). This subset of D(A) has exactly as 
many distinct vectors as A, so ID(A)I 2 1Al. 

We may now assume that IAI > 1and n > 1. Define 

B = {(x, ,  .. . ,x,-,) : there exists x, with (x, ,  . . .,x,-, ,x,,) E A}, 

the projection of A onto the first n - 1dimensions. Since B is a finite, non-empty 
set of distinct vectors in [ W e - ' ,  we can invoke the induction hypothesis to obtain 

ID(B)I 2 I B l .  (2) 
Now, for each b E B, let 

A, = {x, : (b, x,) EA} and let a, = max{x: x E A,), 

so A, is the set of numbers that give the nth coordinate of a vector in A when 
appended to the n - 1 coordinates of b, and a, is the largest such number. 
Finally, let C = A  - {(b,a,): b E B}. That is, we get C by removing exactly one 
vector from A for each b E B, namely the vector (b, a,); in other words by 
"skimming off the highest point which projects onto b, for each b E B." Therefore 

ICI = IAI - IBI. (3) 
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Since 1 C1 < \AI we deduce, from the induction hypothesis, that 

ID(C)I 2ICI .  (4) 
We may describe D(A) and D(C) in terms of the elements of D(B) and thp 

elements of the sets A,: I 

D( A)  = UD, D ( B ) { ( ~ ,1 a - a' 1) :d(b, b') = D with a E A, and a' E A,,}. 

Similarly, since C, = A ,  - {a,}, we obtain 

D ( C )  = UD,  .(,,{(D, I c - c' I) :d(b, b') = D with c E C, and c' E c , } .  

Now comes the key observation in our argument: For any pair b, b' E B, the 
largest difference la - a'I with a E A, and a' E A,,, must have a = a, or a' = a,,. 
Thus this largest difference does not appear among the set of differences 
{ c  - c '  :c E C,, C' E C,,}. We deduce that, for any D ED(B), the set 

{ I c  - c ' I  :d(b, b') = D with c E C, and c' E C , }  

does not contain the largest element of 

{ l a - a ' ) : d ( b , b t )  = D w i t h a ~ A , a n d a ' ~ ~ , , } ,  

so it is a proper subset, and is thus smaller. Comparing the sizes of D(A) and 
D(C), and taking this observation into account, we obtain 

I D (C)  I I (#{la - a' I :d(b, b') = D with a E A, and a' EA,,} - 1) 
D E D ( B )  

s l D ( A ) l  - lD(B) l .  (5) 
Combining (2), (3), (4), and (5) gives 

ID(A)I >ID(B)I  +ID(C)I  2 IBI  +lCI 
as required. 

3. WHEN DOES EQUALITY HOLD IN THEOREM 4? As we indicated at the 
beginning of the Introduction, equality typically holds in inequalities such as 
Theorem 4, only when the vectors in A form part of a lattice. Let 0, be the set of 
all subsets I of Zk of the form R n A, where R is some rectangular box with sides 
parallel to the axes, and A is a lattice with (229, L A G Zk. More specifically the 
points (i,, i,, . ..,i,) E S, with each i, contained in some interval [I,, u,], and S a 
subgroup of (z/~Z), .  One can easily verify that equality holds in Theorem 4 for 
any A E 0,; in fact equality holds if and only if A is a suitable translation of some 
I E 0,: 

Proposition 1. IfA c Rn with ID(A)I = \AI then there exist a, v,, v,, . . . ,v, E Rn, 
with the gth component of vj non-zero for at most one j for each g, such that 
A = {a + C~=,i jv, : ( i l , i ,,...,i,) E I}, where I E 0,. 

Before we indicate how to deduce this from our proof of Theorem 4, we first 
note the following results: 

Proposition 2. IfA and B are two sets of distinct real numbers then #{la - b l : a E 

A, b E B} 2 min{IA I, 1 B I}. If equa l i~holds then either 

A = B is an arithmetic progression; or 
B = {a + (2i + l )d :1 5 2i + 1 2 N  - 1) with A, = {a + 2id :0 I2i I 
2N}, and then A is either A,, or A, less any one element; or 
A = {m - a, m + a} and B = {m - b, m + b} for some a > b > 0. 
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The inequality in Proposition 2 can be proved by taking c to be the smallest 
number from either set (say from B), and then by noting that the numbers 
a - c, a E A, are distinct, positive real numbers. That the enumerated cases are 
the only ones in which equality holds may be proved by induction on min{IA I, I B I}, 
using the induction hypothesis on the smaller sets created by removing the largest 
number from each of A and B. 

Proposition 3. Suppose that I E 0, and that f :  I + R is a map for which If(i) -
f (  j) 1 is a function of d(i, j) only. Then there exist constants a and P such that, for 
every i E I ,  either f(i) = a + p i j  for some faed j, or f(i) = a or p depending on 
whether or not i E T, where T is a subgroup of S of index 2. 

Proposition 3 is easily proved by induction on k. 

Sketch of the proof of proposition I .  If IA l = 1 then clearly ID( A) I = 1. If n = 1 
then A is an arithmetic progression, by Proposition 2. We now proceed with the 
same induction as in the proof of Theorem 4, and then by induction on h( = h( A)), 
the maximum of IA,l, b E B. For h = 1, we know that B has the structure stated 
in Proposition 1 by induction, since ID(B) I = 1B1 as in the proof of Theorem 4. 
Define f(i) = a, where b = a + Cf=,ijvj. The result follows from Proposition 3. 

Now suppose h > 1 and write A(') = A .  By the proof of Theorem 4 we know 
that ID(B(l))l = \B(')I and \D(A('))I = IA(')I where B(') = B and A(') = C. We 
now apply the proof of Theorem 4 to A(') and then to A(3), etc., to find a sequence 
of sets A(') 2 A(') 2 ... 2 A ( ~ )with each h( A(j)) = h + 1 - j and ID( A(j))l = 

lAcj)l. Note that ~ ( j )= {b E B : 1 A,\ 2 j}. 
We first prove Proposition 1 for A* := {(b, x ) :  b E B ( ~ ) ,x E A,}. From the 

proof of Theorem 4 (taking D = 0) we see that there are no more than h elements 
in the union of all sets {la - a'\  : a, a' E A,}. If lA,l = h then, by Proposition 2, 
A, must be an arithmetic progression; and the arithmetic progressions for any two 
such sets must have the same common difference. Moreover if IAbl = \A,,\ = h 
then #{la - a'\  : a E A,, a' E A,,} I h by the proof of Theorem 4, and so either 
A, =Ab ,  or they are two disjoint, but interwoven, arithmetic progressions, by 
Proposition 2. Thus the sets A, of size h are either all identical (in which case A* 
satisfies Proposition 1by the induction hypothesis), or there are two possible such 
sets A,. In this case we may write each b = a + Cf=,ijvj by the induction 
hypothesis, and let f(i) be the smallest element in A,. By Proposition 3 we deduce 
that Proposition 1holds for A*. 

The result thus holds when, A* = A, that is, when there are h elements in every 
A,, or equivalently when B(') = B ( ~ ) .If not then there exists b E B(j) \ ~ ( j + ' )for 
some j, 1 I j I h - 1. Let b' be any point in ~ ( j " )  and D := d(br, b). The 
induction hypothesis ensures that each B(') is a lattice as described in the 
hypothesis of Proposition 1, and this particular lattice structure implies that there 
do not exist p ,  p' E B(j+l) with d( p ,  p ' )  = D. Therefore #{la - a'l -:a E A,, a' 
E A,,} = \Ab 1, by the proof of Theorem 4. Using Proposition 2 we deduce that A, 
and A,, are interwoven disjoint arithmetic progressions, whose union is also an 
arithmetic progression. Thus h(A,,) = j + 1, so taking b' E B ( ~ )we see that 
j = h - 1, and moreover all such sets A,,, b' E B ( ~ )must be the identical arith- 
metic progression. But the same argument applies to every b E B ( ~ - ' ) ,  and so each 
such A, is the same arithmetic progression interwoven between the elements in 
each A,, with b' E B ( ~ ) .Thus Proposition 1holds for A. 

19991 THE SET OF DIFFERENCES OF A GIVEN SET 343 



4. FURTHER QUESTIONS. Proposition 2 inspires, and provides the answer in 
one dimension to, the following open problem: If A and B are finite sets of 
distinct vectors in Rn then show that the order of the set D(A, B) = {d(a,b): a E 

A, b E B} is at least min{lA),I BI}. This translates to finding a lower bound for the 
order of {ab/gcd(a, b)' : a EA, b E B} where A and B are sets of distinct positive 
integers. 

Probably even more difficult would be to find a good lower bound for the order 
of {a/gcd(a, b), b/gcd(a, b) : a E A, b E B}. Generalizing Graham's Conjecture, 
we conjecture that the largest element of this set is 2 min{(AI,I BI} (the authors 
of [3] have informed us that they retract the claim at the end of the introduction to 
[3], which would have implied this conjecture). 

ACKNOWLEDGMENT. We thank Seva Lev and Carl Pomerance for their helpful comments, and 
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