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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

Lexell's Theorem Via an Inscribed 

Angle Theorem 


Hiroshi Maehara 

We present a simple inscribed angle theorem in spherical geometry, and apply it to 
give a short proof of Lexell's theorem. 

Theorem 1. For any spherical triangle ABC inscribed in a jixed circular arc T with 
end-points A, B, the value of L C  - (L A + L B) is constant. 

Figure 1 

Proo? Let 0 be the center of the spherical cap determined by T.Then, since 
the base angles of a spherical isosceles triangle are equal, it follows easily 
from Figure 1that 

L C  - ( L A  + L B )  = *2LOAB, 
where the sign is + if r is a minor arc, and - otherwise. 4 

Let IABCl denote the area of a spherical triangle ABC on the unit sphere. 
Then by Girard's formula, we have IABCl = L A  + L B + L C  - T .  

Theorem 2 (Lexell). Let ABC be a spherical triangle on the unit sphere, and let 3be 
the hemisphere bounded by the great circle AB and containing C. Then the locus of the 
point X E3satisfying IABXl = IABC 1 is the circular arc A*CB*, where A*, B* are 
the antipodal points of A, B, respectiuely. 

Proo? It suffices to show that IABXI = IABCI for any point X on the circular arc 
A*CB* ( X #  A * , X  z B*), By theorem 1, we have LA*CB* - (LCA*B* + 
LCB*A*) = LA*XB* - (LXA*B* + LXB*A*). Since LA*XB* = LAXB, 
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LXA*B* = T - LXAB, LXB*A* = T - LXBA, we have L AXB + L BAX + 
LABX = LACB + L BAC + LABC. Hence, by Girard's formula, we have 
IABXJ = JABCJ. H 

For a different proof of Lexell's theorem, see L. Fejes T6th, Lugerungen in der 
Ebene auf der Kugel und im Raum, Springer-Verlag, Berlin, 1972, p. 23. 
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A Characteristic Property 
of Differentiation 

Khristo Boyadzhiev 

We offer here a simple exercise in calculus with a flavor of functional analysis. The 
differentiation operator D : f -.f '  is a fundamental operator in calculus and it is 
interesting to consider what properties distinguish it from all other operators on 
functions. One important theorem says that if a differentiable function f(x) has a 
relative minimum (or maximum) at x = a,  then f l (a )  = 0. As we shall see now, 
this property "almost" characterizes D.  

Notation. For convenience we consider only polynomials. Let P be the set of all 
polynomials and let p,, n = 0,1, . . . , be the basic polynomials: 

p o ( x )  = 1, p l (x )  = x,  . . . , pn(x )  = xn ,. . . . 
When S : P -. P is a linear operator, we denote its action on p E P by S[p]. Thus 
6[p]  is again a polynomial and its value at some number x is written as S[p](x). 

Theorem 1. Let S : P + P be a linear operator. Then the following are equivalent: 

(i) Ifp has a relative minimum at x = a,  then S[p](a) = 0. 
(ii) 6 = S[pl]D. 

In particular, if S[pl]  = p,, then 6 = D. (Here "minimum" can be replaced by 
maximum.") 

Proof The implication (ii) -. (i) is immediate, so we focus on (i) + (ii). First we 
want to show that every linear operator on P has a convenient general form. By 
Taylor's formula, for any polynomial p and any number a:  

" ~ ( ~ ) ( a )  k 

P (X)  = E7(.-a> . 
k=O 

The sum is finite and we write "con just for convenience. Applying 6 to both sides 
(as polynomials of x, with a fixed) we obtain 
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