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The Reciprocity Law for Dedekind Sums 
via the Constant Ehrhart Coefficient 

Matthias Beck 

1. Introduction. The Dedekind sum can be defined for two relatively prime 
positive integers a ,  b by 

1 0-1 rrka rrk 
S (a ,  b) = - cot-cot-

4b ,=, b b 

These sums appear in various branches of mathematics: number theory, algebraic 
geometry, and topology; they have consequently been studied extensively in various 
contexts. These include the quadratic reciprocity law [13], random number genera- 
tors [12], group actions on complex manifolds [9], and lattice point problems ([I41 
or [S]). Dedekind was the first to show the following reciprocity law [3]: 

He was led naturally to this reciprocity law by considering the 7-function ~ ( 7 )  = 
e . i r r ~ / ~ 2n ~ = , ( 1- e2"'"') on the complex upper half plane and transforming it 

under the action of the modular group SL2(Z). 
GauTS's law of quadratic reciprocity, for example, follows easily from (1); see [13] 

or [16]. We note that $(a, b) = S(a mod b, b). Combining this with the reciprocity 
law (11, one obtains a polynomial-time algorithm for computing G(a, b), similar in 
spirit to the Euclidean algorithm. From this point of view, it is not surprising 
(though not obvious) that$(a, b) can be expressed efficiently in terms of the 
continued fraction expansion of a/b; see [8] or [19]. 

Rademacher was one of the pioneers in the use of Dedekind sums [17]; in fact, 
he found several proofs of (1) [16]. We present yet another proof, which establishes 
a simple connection with lattice point enumeration in polytopes. The reciprocity 
law (1) follows readily once the reader is familiar with the computation of the 
coefficients of the Ehrhart polynomial for a lattice polytope. 

2. COUNTING LATTICE POINTS. Let Zn c Rn be the n-dimensional integer 
lattice, and let 9 be an n-dimensional lattice polytope in Rn, so 9 is a compact 
simplicia1 complex of pure dimension n whose vertices lie on the lattice. For 
t E N, denote by L ( 9 ,  t) the number of lattice points in the closure of the dilated 
polytope t 9  := {bc : x E 9 ) .  Ehrhart proved that L ( 9 ,  t )  is a polynomial in t of 
degree n [6]. Moreover, 

Here, Vol(d9)  denotes the surface area of 9 normalized with respect to the 
sublattice on each face of 9 ,  and ~ ( 9 )  is the Euler characteristic of 9.We note 
that, for convex polytopes 9 ,  ~ ( 9 )  = 1 [6]. 

19991 NOTES 459 



In this paper, we focus on the case R2, where Ehrhart's result is known as Pick's 
Theorem; see [7] or [4]: For a convex lattice polytope 9 E R2, 

L ( 9 ,  t )  = At2 + k ~ t+ 1, 

where A is the area and B is the number of boundary lattice points of 9 .  
In the general case, the other coefficients of L ( 9 ,  t) are not as easily accessible. 

In fact, until quite recently a method of computing these coefficients was un-
known. There has been recent progress in this direction ([I], [2], [lo], and [Ill); 
Diaz and Robins found a way of proving a cotangent representation for the 
generating function C;=, L ( 9 ,  t)eC2"", thereby deriving a formula for the Ehrhart 
coefficients of L ( 9 ,  t )  [S]. For our purposes, the following result (a straightfor- 
ward consequence of [5, Corollary 11) is sufficient: 

Theorem. Let 9 denote the simplex in Rn with the vertices (0, . . . ,0), (a,, 0, . . . ,0), 
(0, a2,  0, . . . , 0), . . . ,(0, . . . ,0 ,  a,,), where a,, . . . , a,, E N are pairwise coprime. De- 
note the corresponding Ehrhart polynomial by L ( 9 ,  t) = CJ=,cjtj. Then e,,, is the 
coefficient of s-("lt1) in the Laurent expansion at s = 0 of 

'TI+! 2" -"Ip f (1  + cothF(s + ir) ir.= 1 

where p = a, a,+ ' .  

The appearance of cotangent products in this result leads us to expect Dedekind 
sums in some form within the coefficients of the Ehrhart polynomial, thus also 
within the formulas for the number of lattice points in simplices. In fact, the 
nontrivial cases of dimension three [I51 and four [IS] involve classical Dedekind 
sums. Both formulas can be obtained easily through the Theorem. 

We use this result in an indirect way. Precisely, we compute c, according to the 
Theorem, and make use of the fact that c, = ~ ( 9 )= 1. Dedekind's reciprocity 
law (1) follows from this idea if we consider the case of dimension n = 2. 

3. PROOF OF THE RECIPROCITY LAW. According to the Theorem, for 
coprime a and b we have to find the coefficient of s-I of the Laurent series at 
s = O o f  

'TI 'TI 

4ab ab 

The Laurent expansion of each factor depends on r:  

7T 

1 + coth-(s + zr) = 
c 

R, := 1 + coth-
7~ir + O(s )  i f c t r  

C 

To keep track of the various cases, we introduce the notation 

1 if clr 
Xc = j 0 i f  c i  r ,  
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so that we can write 1 + c o t h d s  + ir)/c = S, X, + Rc(l  - x,), and (2) becomes 
nb 

C (Saxfl+ Rfl(l - ~ a ) ) ( ~ b x b+ Rb(l - + Rnb(l~ b ) ) ( ~ a b ~ a b  - ~ f l b ) ) .  
r = l  

Now, expand this into all 8 terms, and consider each summand according to the 
number of S, factors: 

1. Terms with one S, factor are 

S, XaRb( l  - xb)Rf lb(1- xab) = SnRbRnb~a(l- Xb - Xab + xab) 

= SflRbR,,( Xa - xab) (3) 
and, similarly, 

The summand with S,, is zero (note that X, x,, = xb xab = xab, and 
X, X, = xab). To compute the contribution of (31, note that the support 
of ,yo - xflbin (1,. . . ,ab} is {ka : 1 I k I b - I}; thus its contribution to 
(2) is 

rr a "I .irika .irika 
-.- (1 + COth-)jl + coth-
4ab " ,,=1 b ab 

1 6-1  rrka rrk 1 1 
= - C 1 -cot-cot- + i  ... = - - - - $ ( a ,  b ) .  

4b , = I  b b 4 4b 

The imaginary part in the preceding sum has to be zero, because the 
original generating function is real. Similarly, (4) gives a contribution of + - fa- '  - 3(b, a), 

2. There are no terms with two S, factors, because 

'a 	 ~ a ~ b ~ b ~ , b ( ~xab) = SaSbRab~ab(l - xab) =- O 
and 

xaRb(l - = SaRbSnb~ab(l - xb)~ b ) ~ n b x a b  	 = 

3. Finally, the term 	S, xaS, xbSab xab= SaSbSnbxab has support {ab}, and 
gives a contribution of 

Adding all contributions, we arrive at 

l Y c- - + - ' [ I- + - + - b ] - 3 ( a , b ) - G ( b , a ) ,a 
' - 4  1 2 a b  b a 

the desired reciprocity law (1). 

The same method applied to dimension n = 3 does not give any further results. 
However, for n = 4, higher dimensional Dedekind sums [20] appear within the 
computations, so that this case is likely to provide new results. 
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Author's comment: In the course of proofreading, it was discovered that Pommersheim made an 
observation in his paper [14] similar to our idea of equating the Euler characteristic with the given 
cotangent Laurent expansion. His approach used toric varieties but translates into an equivalent 
statement. 
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