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Edited by Abe Shenitzer 

Mathematics, York University, North York, Ontario M3JIP3, Canada 

Riemann's Dissertation and Its Effect 
on the Evolution of Mathematics 

Detlef Laugwitz 
Translated from the German by Abe Shenitzert 

A short account of the contents of the dissertation. Riemann's doctoral disserta- 
tion of 1851 is titled Grundlagen fur eine allgemeine Theone der Functionen einer 
veranderlichen complexen Grosse (Foundations for a general theory of finctions of a 
variable complex quantity) [I, 3-43]. It is of modest size. In discussing it we use 
modern terms. 

Riemann defines holomorphic functions as complex single-valued functions on 
Riemann surfaces satisfying the Cauchy-Riemann differential equations. Riemann 
also worked with functions that were holomorphic except for finite poles in @. 
Such meromorphic functions are viewed as conformal mappings between two 
Riemann surfaces. We must always think of the complex plane as extended by the 
addition of the point w (as the Riemann complex number sphere or as a complex 
projective straight line). 

Functions must be thought of not as given by expressions but as determined (to 
within arbitrary constants) by the positions and nature of their singularities. This leads 
to the question of the construction of functions with prescribed properties on a 
given Riemann surface. Here the topology of the surface is of decisive importance. 
The surface T is decomposed by means of n crosscuts into a system of m simply 
connected surface pieces. The number n - m, which is independent of the manner 
of decomposition, is called the order of connectivity of T [I, 10-111; incidentally, 
in modern terms, this number is equal to the negative of the Euler characteristic 
of T. 

In order to construct appropriate functions on T, Riemann uses a variational 
principle. (He called it later the Dirichlet principle because he came to know 
similar procedures in Dirichlet's lectures, and the historically unjustified name 
stuck.) First T is made into a simply connected surface T" by means of crosscuts. 
Then, subject to suitable boundary conditions, the integral 

t~ranslator'snote. Reprinted from "Bernhard Riemann 1826-1866: Turning Points in the Conception 
of Mathematics," by Detlef Laugwitz, Translated by Abe Shenitzer. Copyright 1999 Birkhauser. This 
article is an excerpt (Section 1.2.2, pp. 108-110 and Section 1.2.5, pp. 124-130) from the author's book 
Bernhard Riemann, published by Birkhauser Verlag in 1996. References such as Article 20 or 520 are to 
sections of Riemann's dissertation. 
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is minimized on this surface. If there are singularities to be taken into considera- 
tion, then the integral is somewhat modified. With the possible exception of the 
boundary of T*, the pair of functions u, v associated with the minimum is a 
holomorphic function f = u + iu. It should be noted that the functional values on 
the two edges of a crosscut need not coincide; jumps ("periods") may occur. 

The paper ends with an application of these methods to the Riemann Mapping 
Theorem. This theorem asserts that in certain cases the topological equivalence of 
two surfaces or regions implies their conformal equivalence, i.e., the existence of a 
conformal mapping between them. Here the theorem is first stated for regions in 
the complex plane that are homeomorphic to a circular disk. 

We will examine the individual key words while considering further develop- 
ments in the work of Riemann and others. 

We explain briefly, in modern terms, the form of inference Riemann learned 
from Dirichlet. Let I(cp, +) be the integral of cpxrCI, + cp,lC; over a region G and let 
J(cp) = I (p ,  cp). Let 77 be a function that vanishes on the boundary dG of G. 

J( cp + t77) = J( P) + 2tI( cp, 77) + t2J(77) 
implies that if J ( p )  IJ(cp + tv) is to hold for all t, then we must have Z(p, 77) = 0. 
Put A p  = cp,, + 6,.Our last result, the vanishing of 77 on dG, and the Gauss 
integral formula (Gauss' theorem) imply that 

Since this holds for every 7, it follows that A p = 0. In other words, a function that 
minimizes J ( p )  is a solution of Ap = 0. To be sure, the argument does not prove 
the existence of such a function, and this elicited justified criticism. 

It is relatively easy to prove the uniqueness of the solution of the boundary-value 
problem. If cC, were another solution, then 77 = cp - cC, would vanish on dG. 
Moreover, 

J(cp) = J(*) + 21(*, 77) + J(77) 
and 

But then 

J ( P )  = J(*) + J(77) 2 J(*) .  
In view of the minimality of J(cp), the inequality sign in the last expression must be 
replaced by an equality sign. But then J(77) = 0, i.e., = 77, = 0. Since 77 = 0 on 
dG, it follows that 77 = 0, and therefore I)= cp throughout G. 

The effect of the dissertation. Today we are inclined to regard Riemann's disserta- 
tion as one of the most important achievements of 19th-century mathematics, but 
its immediate effect was rather slight. We saw that in the second part of Article 20 
Riemann himself emphasized just one principle, namely the determination of a 
function by as few data as possible and the elimination of expressions as defini- 
tions of functions. Given its vague formulation, this principle must have struck his 
contemporaries as neither new nor interesting. Riemann was as restrained in his 
statement as he was in the specification of his sources. 

The first person who had to read the paper carefully was the referee for the 
Gottingen faculty, that is, Gauss. His report read as follows: "The paper submitted 
by Herr Riemann is a concise testimony to its author's thorough and penetrating 
studies of the area to which the subject treated therein belongs; of a diligent and 
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ambitious, truly mathematical spirit of investigation, and of praiseworthy and 
fertile independence. The report is prudent and concise, and in places even 
elegant; nevertheless, most readers might well wish for even greater transparency 
of arrangement in some of the parts. Taken in its entirety, it is a solid and valuable 
work which not only meets the requirements usually set for test papers for the 
attainment of the doctorate but exceeds them by far." 

Figure 1. Gauss' testimonial on Riemann's dissertation 

If one has a certain amount of experience with evaluations and forgets for a 
moment that here the princeps mathematicorurn is writing about a person destined 
to become probably the most distinguished of his students, then one gets the 
following impression. The referee recognizes that the author has penetrated deep 
into a highly specialized field and has done this with great diligence, indepen- 
dently, and without the referee having to suggest the topic to him. There is no 
mention of the author's new ideas, of the solution of problems, or of new methods, 
but it is recognized that he may well be showing signs of independent research 
activity. The presentation is terse, elegant only in spots, and on the whole not clear 
enough. An objective reader must wonder what was the basis for the "Doktorvater's" 
(doctoral adviser's) very positive overall evaluation stated in the last sentence. 
Riemann wrote to his brother: 

When I visited Gauss he had not yet read my paper, but he told me that for years he had been 
preparing a paper (and is occupied with this right now) whose subject is the same, or partly the 
same, as the one I am treating 
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(Incidentally, this passage was quoted by Schering in his memorial address in 1866 
[2, 8351.) So far, no one has been able to find any indication that Gauss had 
discussed with Riemann the contents of his paper or had given him any hints or 
suggestions. Riemann would have reported such things. After all, he mentioned 
the rather disappointing conversation with Gauss which comes down, more or less, 
to this: right now I happen to be writing on a related topic, but your paper has not 
interested me enough that I should immediately and eagerly plunge into it. 

Some (e.g., Remmert [6, Band 2, 1581) think that the old Gauss was "chary of 
praise" ("lobkarg"). But what argues against this is the fact that a few years earlier 
he had praised young Eisenstein to the skies. We will make no guesses about the 
great Gauss' admittedly baffling behavior toward Riemann. 

We summarize the essential mathematical concerns that originated in Riemann's 
dissertation. 

(1) The idea of a Riemann surface. Here, for the first time, the domain of 
definition of a function becomes one of the data that determine it. The complex 
plane is compactified by the addition of a single point m, the Riemann surfaces 
over it are precisely defined, the connectivity number is introduced and recognized 
as a topological invariant. (Complex) analysis is carried out not locally but on 
manifolds, which are compact in the case of algebraic functions. Local repre- 
sentability (by power series) is proved but is of secondary importance. 

(2) In addition to poles, branch points are recognized as characteristic types of 
singularities, and the local series expansions in terms of (negative or fractional) 
powers are rigorously justified (Article 13/14, [I,  24-27]). 

(3) The existence (together with the continuity) of f l ( z )  is equivalent to the 
Cauchy-Riemann differential equations (together with the continuity of the occur- 
ring partial derivatives) and to the conformal character of f .  It is also equivalent to 
the local expandibility, which implies the existence of all derivatives. (Holomorphic 
or analytic functions.) 

(4) The transformation of surface integrals into line integrals is a tool for 
proving theorems (Articles 7-12, [I,  12-24]) of the "Cauchy type." 

(5) The ("Dirichlet'? principle of the existence of a function that minimizes a 
surface integral is used to solve boundary-value problems by means of holomorphic 
functions. 

(6) The Riemann Mapping Theorem is a consequence of (5). 

The response of contemporaries was amazingly slight; hardly any of the more 
than 500 titles in Purkert's list covering the period from 1851 to 1891 ([2, 869-8951) 
and relevant to Riemann's dissertation appeared before his death. This is all the 
more surprising if we keep in mind that two of Riemann's papers that presented 
the ideas of his dissertation in greater detail and applied them to the solution of 
problems appeared in 1857. Things were no different when it comes to textbooks. 
For example, Heinrich Weber's Elliptische Functionen of 1891 contains nothing 
relating to Riemann. Thus one can hardly speak of a significant impact of 
Riemann's ideas during his lifetime and in the first 25 years after his death. In the 
subsequent sections we will examine the question of the very special directions in 
which Riemann influenced research and the question of which elements of his 
essential ideas failed initially to attract attention. 

Let us return to the year of the composition of the dissertation. Jacobi died on 
18 February 1851. Dirichlet pushed Riemann in another direction, which led to his 
habilitation paper on trigonometric series. Representatives of the algorithmic 
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direction could hardly be expected to approve of Riemann's dissertation. Eisen- 
stein died on 11October 1852 and Weierstrass had not yet appeared on the scene. 
The French mathematicians, whose contributions were not explicitly acknowledged 
in the dissertation, could at best be expected to recognize the concept of a 
Riemann surface as new. At the same time, they viewed it as too complicated and 
superfluous. Moreover, Cauchy's students soon got used to working with complex 
functions in the complex plane in much the same way as Cauchy, who had used 
complex formulations for his integral theorems and for his method of residues as 
early as 1831. They must have regarded the method of real partial differential 
equations as a backward step. At the time doubly periodic functions were in 
fashion, and they could be dealt with without the use of Riemann surfaces. 

Of course, in time the six previously listed key issues associated with the 
dissertation exerted a powerful effect. What follows is a survey describing 
this effect. 

The effect of (6) was later especially notable in applied mathematics. For a disk, 
the first boundary-value problem for the potential equation u , ,  + u , ~= 0 is 
solved by the Poisson integral, which expresses the function u in terms of its 
boundary values. Since the differential equation is invariant under conformal 
mappings, we obtain a solution of this problem for any simply connected region 
bounded by a curve by mapping the disk conformally onto this region. But this is 
just an existence statement, and Riemann's theorem does not directly yield a 
formula representing the solution. Such representations were eventually obtained 
for regions of practical importance by H. A. Schwarz, E. B. Christoffel, and others. 

The mapping theorem became effective in many respects independently of 
applications and of the other objectives and contents of the dissertation. It is an 
instance of Riemann's novel view of mathematics. For one thing, it illustrates the 
fruitfulness of the notion that functions are simply mappings. For another, it is a 
global proposition; all Gauss could prove was the conformal equivalence of small 
pieces of surfaces. Finally it was one of the deeper existence theorems to emerge 
after Cauchy's existence theorems about solutions of differential equations. For 
adherents of algorithms this was an unusual type of proposition; indeed, they took 
note of transformations only if they were associated with effective formulas. It is 
also noteworthy that the theorem shows that the theory of functions on a simply 
connected region with boundary is completely independent of the special choice of 
region. When investigating a special class of functions we can choose a convenient 
special region, say the upper halfplane. 

Riemann's sketch of a proof in $21 is cryptic, and not just because of his use of 
the Dirichlet principle. Efforts to fully justify the idea of his proof failed. Given the 
importance of the theorem for applications, this failure stimulated attempts to 
develop new methods of proof. These remarks also apply to the uniformization 
theorem, which generalizes Riemann's mapping theorem. The geometric formula- 
tion promoted the acceptance of the notion of a Riemann surface. Riemann 
himself spoke [I, 401 of "geometric clothing" ("geometrische Einkleidung") used 
for "illustration and more convenient wording" (zur "Veranschaulichung und 
bequemeren Fassung"), formulations hardly ever encountered elsewhere in his 
writings. The use of complex methods for the computation of definite integrals 
opened up a new field for the applicability of complex function theory, and that is 
why complex analysis became a fixed component of the mathematical education of 
physicists and engineers. As for mathematics itself, the question of admissible 
boundaries of simply connected regions provided essential impulses for the evolu- 
tion of point set theory. 
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For the effects of the dissertation in the first fifty years after Riemann, see [5]. 
For later developments see [6,Band 2, 157-1631. We recommend [3] and especially 
[4], a book saturated with Riemann's style of thinking. It is safe to say that, even 
had Riemann's dissertation consisted of just the mapping theorem, its influence 
would ultimately have been considerable. 

The effect of (5) was unexpected. Riemann's justification of the existence of a 
minimal solution is inadequate. This was noted by Weierstrass, whose 1870 
criticism was devastating and seemed to destroy the very basis of Riemann's 
justification of complex analysis. But this had also very positive consequences. 

One consequence was that people tried, successfully, to prove the relevant 
results without using the Dirichlet principle. Actually they would have tried to find 
such proofs regardless of doubts about this principle. Such attempts reflect the 
wish to construct complex function theory in a "purely comp1ex"way and to avoid 
the use of tools from real analysis, functions u and u of two real variables x and y .  
This too was achieved. Incidentally, this does not signify the rejection of Riemann's 
development of function theory. In view of its conceptual basis, it is closer to our 
way of thinking than is, say, the Weierstrass approach. 

Another consequence of the criticism directed at Riemann's justification of the 
Dirichlet principle was even more important than the first one. Since there were 
no counterexamples and the principle itself was believable, people felt that it must 
be provable. Hilbert obtained a proof after 1900, and in doing so developed the 
so-called direct methods of the calculus of variations, which avoid the detour 
through the partial differential equations associated with the variational problem. 
One begins instead with a sequence of functions for which the values of the 
integral, or more generally of the functional, to be minimized approximate the 
infimum. One must show that the space of admissible functions has a compactness 
property which justifies the conclus~on that a subsequence converges to a function 
for which the functional takes on its minimum. In this way a method was 
developed that not only saved the Dirichlet principle but has progressively become 
more important in the 20th century. 

But let us go back briefly to the attempts to avoid the Dirichlet principle. Much 
was achieved by H. A. Schwarz and C. Neumann. As for the mapping theorem, the 
conclusive result was obtained independently by PoincarC and by Koebe in 1907. It 
asserts that every simply connected Riemann surface is holomorphically equivalent 
to one of following three surfaces: @ u {m) (the number sphere or complex 
projective straight line), @ (the number plane or complex straight line), or the open 
disk / z /< 1. The key that leads one to this group of problems in the literature is 
the uniformization theorem. This problem and its easy-to-formulate answer were 
almost obvious to Riemann, but half a century was needed to obtain it. 

We do not know whether Riemann expected a stronger response. After all, he 
did say 

However, we now refrain from the realization of this theory ...for we rule out, at present, 
consideration of an expression of a function 

He set aside for a few years the task of investigating concrete functions and classes 
of functions, and tackled it in connection with lectures devoted to these matters. 
Of course, this did not happen during his first year as university instructor. 
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Snow and Ice and Numbers 
It seems necessary to explain my claustrophobia to him. 
"Do you know what the foundation of mathematics is?" I ask. "The foundation of 

mathematics is numbers. If anyone asked me what makes me truly happy, I would say: 
numbers. Snow and ice and numbers. And do you know why?" 

H e  splits the claws with a nutcracker and pulls out the meat with curved tweezers. 
"Because the number system is like human life. First you have the natural numbers. 

The ones that are whole and positive. The numbers of a small child. But human 
consciousness expands. The child discovers a sense of longing, and do you know what 
the mathematical expression is for longing:'" 

H e  adds cream and several drops of orange juice to the soup. 
"The negative numbers. The formalization of the feeling that you are missing 

something. And human consciousness expands and grows even more, and the child 
discovers the in between spaces. Between stones, between pieces of moss on the stones, 
between people. And between numbers. And do you know what that leads to? It leads 
to fractions. Whole numbers plus fractions produce rational numbers. And human 
consciousness doesn't stop there. It wants to go beyond reason. It adds an  operation as 
absurd as the extraction of roots. And produces irrational numbers." 

He warms French bread in the oven and fills the pepper mill. 
"It's a form of madness. Because the irrational numbers are infinite. They can't be 

written down. They force human consciousness out beyond the limits. And by adding 
irrational numbers to rational numbers, you get real numbers." 

I've stepped into the middle of the room to have more space. It's rare that you have a 
chance to explain yourself to a fellow human being. Usually you have to fight for the 
floor. And this is important to me. 

"It doesn't stop. It never stops. Because now, on the spot, we expand the real 
numbers with imaginary square roots of negative numbers. There are numbers we can't 
picture, numbers that normal human consciousness cannot comprehend. And when we 
add tbe imaginary numbers to the real numbers, we have the complex number system. 
T h e .  first number system in which it's possible to explain satisfactorily the crystal 
formation of ice. It's like a vast, open landscape. The horizons. You head toward them 
and they keep receding. That is Greenland, and that's what I can't be  without! That's 
why I don't want to be locked up." 

Smilla's Sense of Snow. by Peter H ~ e g ,  translated by Tiina Nunnally 
Dell Publishing, New York, 1994, pp. 121-122 

Contributed by Evan J. Romer,  Windsor, NY 

19991 THE E\  OLUTlOh OF . . . 469 


