

10738

Radu Theodorescu

The American Mathematical Monthly, Vol. 106, No. 5. (May, 1999), p. 471.

Stable URL:

<http://links.jstor.org/sici?sici=0002-9890%28199905%29106%3A5%3C471%3A1%3E2.0.CO%3B2-0>

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at [http://www.jstor.org/about/terms.html.](http://www.jstor.org/about/terms.html) JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <http://www.jstor.org/journals/maa.html>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

10737. *Proposed by Hassan Ali Shah Ali, Tehran, Iran.* Let *m* and *n* be positive integers with $n \ge 2m$, and let $a_1 \le a_2 \le \cdots \le a_n$ be positive integers such that

$$
a_n < m + \frac{1}{2m} \left(\sum_{i=1}^m \binom{n}{2i} \binom{2i}{i} \right).
$$

Show that there exist two different *n*-tuples $(\epsilon_1, \ldots, \epsilon_n)$ and $(\delta_1, \ldots, \delta_n)$, with entries 0, 1, and 2, such that $\sum_{j=1}^{n} \epsilon_j = \sum_{j=1}^{n} \delta_j \le 2m$ and $\sum_{j=1}^{n} \epsilon_j a_j = \sum_{j=1}^{n} \delta_j a_j$.

10738. *Proposed by Radu Theodorescu, Universite' Laval, Sainte-Foy, PQ, Canada.* For $t > 0$, let $m_n(t) = \sum_{k=0}^{\infty} k^n e^{-t} t^k / k!$ be the *n*th moment of a Poisson distribution with parameter *t*. Let $c_n(t) = m_n(t)/n!$. A sequence a_0, a_1, \ldots is $log\text{-}convex$ if $a_{n+1}^2 \le a_n a_{n+2}$ for all $n > 0$ and is *log-concave* if $a_{n+1}^2 \ge a_n a_{n+2}$ for all $n > 0$.

(a) Show that $m_0(t)$, $m_1(t)$, \dots is log-convex.

(b) Show that $c_0(t)$, $c_1(t)$, ... is not log-concave when $t < 1$.

(c) Show that $c_0(t)$, $c_1(t)$, \ldots is log-concave when *t* is sufficiently large.

(d)* Is $c_0(t)$, $c_1(t)$, ... log-concave when $t \ge 1$?

SOLUTIONS

Moments of Roots of Chebyshev Polynomials

10448 *[1995,360]. Proposed by Fu-Chuen Chang, National Sun Yat-sen University, Kaohsiung, Taiwan.* Fix a positive integer *n*. Let $x_i = \cos((2i - 1)\pi/(2n))$ for $1 \le i \le n$, and let $c_k = \frac{1}{n} \sum_{i=1}^n x_i^k$ for $k \in \mathbb{N}$. Show that

$$
c_k = \begin{cases} 0 & \text{if } k = 1, 3, ..., 2n - 1; \\ {k \choose k/2} 2^{-k} & \text{if } k = 0, 2, ..., 2n - 2. \end{cases}
$$

Solution I by Paul Deiermann, Louisiana State University, Shreveport, LA. When $k = 0$ and *n* is odd, the term for $j = (n + 1)/2$ appears as 0^0 , which must be taken to be 1 to arrive at the stated formula and our generalization. We show, for arbitrary integers $k \geq 0$, that

$$
c_k = \begin{cases} 0 & \text{for } k \text{ odd,} \\ 2^{-k} \sum_{p=-m}^{m} (-1)^p {k \choose pn + \frac{k}{2}} & \text{for } k \text{ even,} \end{cases}
$$

where $m = \lfloor k/(2n) \rfloor$. The stated problem covers those *k* for which $m = 0$.

First note that $x_{n+1-j} = -x_j$, so the terms of the sum cancel in pairs when *k* is odd. We may thus restrict to the case of *k* even. Since $x_i = (e^{i\pi(2j-1)/(2n)} + e^{-i\pi(2j-1)/(2n)})/2$, the binomial theorem and a summation of a finite geometric progression imply

$$
\sum_{j=1}^{n} x_{j}^{k} = \sum_{j=1}^{n} 2^{-k} \left(e^{i\pi \frac{2j-1}{2n}} + e^{-i\pi \frac{2j-1}{2n}} \right)^{k} = 2^{-k} \sum_{j=1}^{n} \sum_{q=0}^{k} {k \choose q} e^{i\frac{\pi}{2n}(k-2q)} e^{i\frac{2\pi}{n}(q-k/2)j}
$$

$$
= 2^{-k} \sum_{q=0}^{k} {k \choose q} e^{i\frac{\pi}{2n}(k-2q)} \sum_{j=1}^{n} e^{i\frac{2\pi}{n}(q-k/2)j} = 2^{-k} \sum_{q=0}^{k} {k \choose q} e^{i\frac{\pi}{2n}(2q-k)} \sum_{u=0}^{n-1} e^{i\frac{2\pi}{n}(q-k/2)u}
$$

$$
= 2^{-k} \sum_{q=0}^{k} {k \choose q} e^{i\frac{\pi}{2n}(2q-k)} \begin{cases} \frac{n}{1-e^{i\pi(2q-k)}} & \text{if } q-k/2 = pn, p \in \mathbb{Z}, \\ \frac{1-e^{i\pi(q-k/2)}}{1-e^{i\frac{2\pi}{n}(q-k/2)}} = 0 & \text{if } n \nmid q-k/2. \end{cases}
$$

Since *k* is even, $q - k/2 = pn$ implies $q = pn + k/2$. Then, $0 \le q \le k$ gives $-m \le p \le m$. Also, in this case, $e^{i\frac{\pi}{2n}(2q-k)}=e^{i\pi p}=(-1)^p$. Thus, we get

$$
\sum_{j=1}^{n} x_j^k = 2^{-k} n \sum_{p=-m}^{m} (-1)^p {k \choose pn + \frac{k}{2}}.
$$