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Chaos, Cantor Sets, and Hyperbolicity 
for the Logistic Maps 

Roger L. Kraft 

The family of logistic maps f,(x) = px(1 - x) appears in almost every dynamical 
systems textbook. It is one of the simplest nonlinear systems that one can study, 
but it is amazingly rich in phenomena. It has a surprising number of connections to 
other topics in dynamical systems and applied mathematics, for example, popula- 
tion dynamics, symbolic dynamics, complex analytic dynamics, the Mandelbrot set, 
the period-doubling route to chaos, renormalization, universality, homoclinic bifur- 
cations, horseshoes, and invariant measures. Because of its simplicity, many 
introductory dynamical systems textbooks use it as a primary example, in particular 
as the primary example of a chaotic dynamical system. When p > 2 + 6= 4.236, 
it is not too difficult to prove that f ,  is chaotic on an invariant Cantor set; for the 
details, see any of [ I ,  pp. 31-50], [3, pp. 112-1261, or [4, pp. 69-85]. Each of these 
books states without proof that f ,  is actually chaotic for all p > 4. Our goal is to 
give a simple proof of this fact. 

As far as I know, only one textbook gives a proof that f ,  is chaotic for p > 4 
[6, pp. 33-37]. However, its proof uses the PoincarC hyperbolic metric on the unit 
interval, the calculation of a derivative using different metrics, and the Schwarz 
Lemma from the theory of complex variables. While this proof is very elegant, and 
hints at the connections between the logistic maps and complex analytic dynamics, 
it is not in the spirit of the more elementary books. 

The family of logistic maps f ,  : IW + IW, p > 0, is a family of parabolas that 
open downward, intercept the x-axis at 0 and 1, and have a maximum at 1/2. Since 
the maximum value is p/4,  f ,  maps the interval [O, 11into [O, 11when 0 < p I4. 
But when p > 4, there are points in [O, 11 that escape from [O, 11 under forward 
iteration of f,. Let 

For p > 4, A, contains exactly those points in [O, 11 that never escape under 
forward iteration by f,. Our main result is: 

Theorem 1. If p > 4, then A, is a Cantor set, and the restriction o f f ,  to A, 
is chaotic. 

Once we have shown that A, is a Cantor set, the proof that the restriction of f ,  
to A, is chaotic is same as in the case p > 2 + 6:Use itineraries to construct a 
topological conjugacy between f ,  on A, and the shift map a on C, = (0, 1IN; this 
shows that f ,  on A, is topologically transitive and has dense periodic points. It 
is easy to show that f ,  on A, has sensitive dependence on initial conditions; in 
fact, it is easy to show that it is expansive, which is a stronger property [I, p. 501, 
[6, p. 831. All the details of these steps remain unchanged. 
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Figure 1. 

Choose a value of p > 4, and let us define some notation. Let q, < q, solve 
f,(x) = 1; see Figure 1. Let I, = [O, 11, and let I,= [0, q,] U [q,, 11. Notice that 
I,= fi1(I0). In general, let I, = fil(I,,-,)= fin(I0). Then I,,is exactly those 
points in [O,1] that stay in [0, 11 for their first n iterates under f,, and I, c I,,_,. 
Notice also that I,, is made up of 2" disjoint closed intervals. Order the 2" 
components of I,,from left to right, and let I,,,,denote the j-th component. (To 
keep the notation as simple as possible, we suppress the explicit dependence of 
objects like I,,on the parameter p.)For more details about the definitions in this 
paragraph, see [I, pp. 34-36], [3, pp. 112-1141, [4, pp. 70-731, or [6, pp. 30-321. 

If I is an interval, we let 111 denote the length of I. 
Recall that a subset of the real line is a Cantor set if it is compact, perfect, and 

totally disconnected. Recall also that a subset of the real line is totally disconnected 
if and only if it does not contain any intervals; see [I,p. 371, [3, p. 1161, [4, p. 731, or 
[6, p. 261. 

The first step in proving that A, is a Cantor set is the following lemma. 

Lemma 2. If p > 4, then A, is a compact perfect set. 

Proof: Since A, = n;=, I,,and each I,,is compact, we know that A, is compact. 
To show that A, is perfect, first notice that for every n ,  all the endpoints of I,,are 
contained in A,. Let x E A,, and for each n let I,,,,denote the component of I,, 
that contains x If II,,,,, I -+ 0 as n -+ m, then thdre are endpoints from I,,,!, 
arbitrarily close to x, so x is in the closure of A, \ {x}.On the other hand, if 
11,,,,, 1 does not go to 0 as n + m, then n;=, I,,,,, is a closed interval, and 
x E n;=, I,,,,, c A,, so once again x is in the closure of A, \ {x}.This shows that 
A, is perfect. H 

To finish the proof that A, is a Cantor set, we need to show that it does not 
contain any intervals. How is this done when p > 2 + 6 ?  A simple calculation 
shows that when p = 2 + 6,fk(q,) = 1. So if p > 2 + 6 ,  then Ifk(x)l > 1 
for all x E I,.This key fact makes the case p > 2 + 6 straightforward, as we 
now show. 
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Lemma 3. If p > 2 + 6 ,  then A, is a Cantor set. 

Proof: Suppose that A, contains an interval; let [a ,  b ]  c Ap.  For every n 2 1, the 
Mean Value Theorem applied to f i  on the interval [a ,  b ]  ensures that there is a 
point c,, E (a ,  b )  such that 

f ,"(b) - f , " ( a )  = ( f : ' ) ' ( c , , ) (b- a ) .  

Let A = fL(q,), so IfL(x)l 2 A for all x E I,. Since p > 2 + 6 ,  we have A > 1. 
Since c,, E [a ,  b ]  c A,, we have f;(c,,) E A, c I,  for all 0 I i I n - 1. There-
fore, I(f:)'(c,)l 2 A" by the chain rule, and 

aI.I f ; '(b) - f,"(a)l = l ( f ,") ' (c , , ) l  .Ib - a1 Anlb -

Since A > 1, this implies that I f i (b)  - f,"(a)l > 1 for all n sufficiently large. But 
A, is invariant, and hence { f n ( a ) ,  f17(b)} c A, c [0, 11 for all n ,  so we have a 
contradiction. Thus A, does not contain any intervals, and hence is a Cantor set. 

H 

Here is another way to think about this proof: If p > 2 + 6 ,  and we apply f i '  
to I,, to get I,,,, , then f i t  shrinks the length of every component of I,, by at least 
the amount A-' < 1,so the lengths of the components of I,, go to zero as n goes 
to infinity. 

When p E (4, 2 + 61,we have Ifk(x)l > 1 for some x E I,, but Ifk(x>l I 1 
for other x E I,. When we apply f;' to I,, to get I,,,, f;' shrinks some 
components of I,,, but, in contrast to the case when p > 2 + 6 ,  f;' may also 
stretch other components of I,,. This combination of shrinking and stretching by 
f;' is what makes it difficult to show that A, is a Cantor set when 4 < p I 2 + 6 .  
However, a little playing around with f ,  should give one the sense that somehow, 
the stretching is eventually dominated by the shrinking as we repeatedly apply fL1. 
This leads to the following important definition. 

Definition. Let f :  R + R be a function, and suppose that A is a compact 
invariant set for f (i.e., f ( A )  = A). Then A is a hyperbolic set for f if there are 
constants C > 0 and A > 1 such that I( f") ' (x) l  2 CA" for all x E A and all 
n 2 1. 

The C in the definition takes care of the fact that f-' may stretch some 
intervals (i.e., Ifl(x)l I 1 for some x E A) ,  in which case C < 1, but A > 1 implies 
that shrinking under f-" eventually dominates any stretching when CA" > 1; see 
[6, pp. 107-108 and p. 1561. 

The following lemma gives some insight into the definition of hyperbolicity, and 
makes it easier to use. 

Lemma 4. Let f :  R' + R' be a C1 finction, and suppose that A is a compact 
invariant set for f .  Then the following are equivalent. 

(1) 	There are constants C > 0 and A > 1 such that I ( fn) ' (x ) l2 CA" for all 
x E A and all n 2 1. 

(2) There is an integer N 2 1 such that I ( f  " ) ' ( x )  1 > 1 for all x E A and all 
n 2 N. 

(3)  There is an integer no 2 1 such that I ( f "">'(x)l > 1 for all x E A. 
(4)  For everyx E A there is an integer n ,  2 1,which may depend on x ,  such that 

I(fH1>'(x>l> 1. 
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Remark. If If'(x)l > 1 for all x E A, then it is obvious that all four of the 
conditions in the lemma are true. This emphasizes once again that it is the 
possibility that If'(x)l 5 1for some x E A that makes the definition of hyperbolic- 
ity subtle. 

Proof: (4) * (3) [5,p. 2201 Since f is C1,(f ")' is continuous for every n. For each 
x E A, I( f "~) ' (x) l> 1and (f " A ) '  is continuous, so there is neighborhood U, of x 
and a A, > 1 such that I(fn~)'(y)I > A, for all y E U,. The open sets {U,lx E A} 
cover the compact set A, so there is a finite subcover {q},k_,, numbers {~,},k=, 
all strictly greater than 1, and integers {n,},k=, such that I(f "~)'(y)I> A, for all 
y E q. Let 

v = max{n, . . .nk) ,  A, = m i n { ~ ,. . . A,), and m min { I  f ' ( x )  I } ,= 
x ~ h  


so m > 0 (why?). Choose an integer k so that him" > 1, and let no = kv + v. 
Now that we have defined our global choice for no ,  we need to show that 
I (f "9'(XI1 > 1for all x E A. If we imagine that A, represents "good" derivatives 
(A, > 1) and m represents "bad" derivatives (m < I), then we need to show that 
fn0(x) contains at least k iterates with good derivatives to compensate for the 
worst case of v iterates with bad derivatives. 

Choose x E A and perform the following selection process that depends on x 
and terminates after a finite number of steps: 

Choose v, so that x E UuI. Now suppose that we are given {v,, . . . , vj}. Let 
77 = Ci=,n,,. Choose vj+, so that fYx)  E Uu,+l. If 7 + v,+, > kv,  then stop; 
otherwise, go on to choose vj+2 

If the selection process stops after j steps, then kv < Ci,,nVz5 kv + v. Write 
no = nul+ nV2+ + + .  +nu  + i,, where 0 Ii, Iv. Each n,, represents a good 
iterate (derivative > 1): j represents how many good iterates we actually have, 
and i, represents how many bad iterates (derivatives < 1) we actually have. Since 
each n,, r v, we know that j 2 k. Using the chain rule, we can estimate I( f "">'(x)l: 

2 mLAA.; . . . AVl (by the properties of the subcover { Q):=,) 

2 m%A (by our choice of A,) 

2 m%i (since j 2 k and A, > 1) 

> 1 (because of our choice of k )  . 

Thus, I (f'")'(x) 1 > 1for all x E A, which proves (3). 

(3) * (2) [I, p. 991 If no = 1 in (3), there is nothing to prove, so suppose 
no > 1. Let 

A =  min{l(fno) ' (x) l)  and m =  min{lf '(x)l}, 
x E  A x e h  

so A > 1 (why?) and m > 0. Since we are assuming that no > 1, we must have 
m _< 1. Choose k so that m " 0 - l ~ ~  nok + (no 1). If n > N, write> 1. Let N = -
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n = n,(k + v) + i, where v > 0 and 0 I i I no - 1. Then for any x E A we have 

I(f1l) '(x) I = l ( f t l ~ ( k + u ) ) ' ( f i ( x ) ) l. l ( f l ) ' ( x )  I 
> ~ k + u ~ i  
-

2 ~ " / \ ~ m " o - '  (since m I1 and i I no - 1) 

> A" (by our choice of k )  

> 1 (since A > 1) .  

(2) =1 (1) If N = 1 in (21, there is nothing to prove, so suppose N > 1. Let 

m1 = min{( ( fN) ' ( x )I }  and m = min{l f l ( x )  I), 
X €  A X E A  

so m, > 1. Since we are assuming that N > 1,we must have m I 1. Let 

A = nz:lN and C = (m/A) N - l ,  

so A > 1 and C > 0. For any n > 0 write n = IN + i, where k 2 0 and 0 4 i s 
N - 1. Then for any x E A we have 

l < f t l > ' < x >l = l ( f k N ) ' ( f i < x > ) l.I(f " '(XI l 
2 mfm' 

= ~ k N ~ i  (by our choice of A) 

= A ~ ~ A ' ( ~ / A ) '  

> AkN+'- ( m / ~ )N- l  (since m/A < 1and i 5 N - 1) 

= CA" (by our choice of C )  . 

(1) * (4) Choose n large enough so that CA" > 1. Then we have I (f ")'(x) 1 2 CAn 
> 1.Now let n ,  = n for every x E A. 

Why so many versions of the definition of hyperbolic? When we want to prove 
that a set is hyperbolic, it helps to use the weakest version of the definition, (4). On 
the other hand, when we want to prove general conclusions about a hyperbolic set, 
then it helps to use the strongest version, (I). Also, (2) is used as the definition of a 
hyperbolic set in some textbooks when the emphasis is on dynamics in one 
dimension, e.g., [I, p. 381, or [4, p. 771. But a generalization of (1) is used in the 
definition of hyperbolicity for higher dimensions, e.g., [6, p. 2411. 

When p > 2 + 6,we have Ifk(x)l > 1 for all x E I,, and this is the key to 
proving that A, is a Cantor set. To prove that A, is a Cantor set when p > 4, we 
need to replace "IfL(x)l > 1 for all x E I," with "A, is a hyperbolic set for f,." 
Before we can begin the proof of hyperbolicity, we need to introduce an important 
tool. the Schwarzian derivative. 

Definition. The Schwarzian derivative of a C3  function f at a point x where 
f l (x)  # 0 is 
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This strange definition turns out to be tremendously useful. Our first result 
about the Schwarzian derivative is the following lemma. 

Lemma 5. For the logistic family fp  with p > 0: 

(1 )  S f p ( x ) < 0 for all x E R \ {1 /2} ,  
(2 )  Sf,"(x) < 0 for all n > 1 and all x E [W \ u : 1 , f i i ( l / 2 ) .  

The first item is easy, since f f  = 0. However, the second is not so obvious, since 
f i  is a polynomial of degree 2". The second item follows from the first item, the 
following lemma, and induction. This "hereditary" result is one of the reasons the 
Schwarzian derivative is so useful. 

Lemma 6. If g l ( x )  # 0 and f l ( g ( x ) )  # 0, then 

S ( f  o g ) ( x )  = S f ( g ( x ) ) . XI)^ + 

So i f S g ( x )  < 0 and S f ( g ( x ) )  < 0, then S ( f  g ) ( x )  < 0. 

Proof: The chain rule gives 

( f  o g ) ' ( x )  = f 1 ( g ( x ) ) g ' ( x ) ,  

A computation now gives the desired result. H 

We say that a function f has negative Schwarzian derivative on an interval I if 
f l ( x )  # 0 and S f ( x )  < 0 for all x E I ;  we abbreviate this as Sf < 0 on I .  The 
following lemma gives a geometric consequence of negative Schwarzian derivative. 

Lemma 7. If I is an open interval and Sf < 0 on I ,  then f' cannot haue a positive 
local minimum on I ,  nor can it haue a negative local maximum. 

Proof: Suppose that x is a positive local minimum point for f' on I .  Then 
f l ( x )  > 0, f U ( x )= 0, and f " ' ( x )  2 0 (why?). This implies that S f ( x )  2 0, which 
contradicts Sf < 0 on I .  

Similarly, if x is a negative local maximum point for f' on I ,  then f l ( x )  < 0, 
f " ( x )  = 0, and f U ' ( x )I0. This implies S f ( x )  2 0, which contradicts Sf < 0 on I .  

H 

Lemma 8 (Minimum Principle). Let I = [ a ,  b ]  and suppose f is c3on I .  If Sf < 0 
on ( a ,  b ) ,  then If1(x>l > min{I f l (a) l ,  I f l (b ) l )  for all x E ( a ,  b) .  

Proof: Since lf'l is continuous on the closed interval I ,  it must have a minimum at 
some point x ,  E I .  If x ,  E ( a ,  b ) ,  then f l ( x , )  # 0 since Sf < 0 on ( a ,  b) .  If 
f l ( x , )  > 0, then f' has a positive local minimum on ( a ,  b ) ,  which contradicts 
Lemma 7. On the other hand, if f 1 ( x 0 )< 0, then f' has a negative local maximum 
on ( a ,  b ) ,  another contradiction of Lemma 7. It follows that x ,  = a or x ,  = b. H 

The Minimum Principle is the key result we need about negative Schwarzian 
derivatives. When we apply it to the iterates f:, we get information about the 
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shape of the graph of f," between its critical points that would be very difficult to 
get in any other way. 

There are other important consequences for one-dimensional dynamical systems 
of negative Schwarzian derivative; see [ I ,Section 1.111. 

Now consider f,. For any p > 0, f, has a fixed point at p,  = 1 - ( l / p ) ,  and 
f k (p l )  = 2 - p, SO I f ~ ( p l ) l> 1 when p > 3. Let p, = 1 / p ,  so p, and p ,  are 
symmetric about 1/2; see Figure 2. Notice that f,(p,) =p,  (when p > 2), and 
that f,([p,, q,]) = f,([q,, p,l) = [ p , ,11. So if we let J = ( p , ,  q,) u (q , ,p,), and if 
x is any point in J, then f,(x) @ J. But we have the following "return lemma." 

0 '  Y O  40 41 PI 1 

Figure 2. 

Lemma 9 (Return Lemma). If p > 4 and i f x  E J ,  then there is an integer n 2 2 
such that f:(x) E [p , ,  p,). 

Proof Choose x E J, so f,(x) E ( p , ,  1) and f ; (x)  E (0,p,). If f ; (x)  E [ p , ,p,),  
then we are done. Suppose that f:(x) E (0,p,). We claim that for some n 2 1, 
f;+"(x) is in [p , ,  p,). Suppose not. Since f,(z) > z for all z E (0,p,), we know 
that f;+"(x) is an increasing sequence bounded from above by p,. So f;+"(x) 
converges as n + to some point z ,  Ip,. It follows that z ,  is a fixed point for 
f,. But 0 < z ,  < p,, so we have a contradiction. 

Lemma 10. If p > 4, then q, - p, <p,. So the intevvals ( p , ,  q,) and (q , ,p , )  are 
shorter than the intervals (0,p,) and ( p , ,  1). 

Proofi We need to show that p > 4 implies 2po > q,. Recall that 
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Since p > 4, we have 0 < 1 - (4/p) < 1, so d w > 1 - (4/p). After 
multiplying both sides by 1/2, we have 

2 - > - - - - -( a )  ; /z* 
Now we have all the ingredients we need to prove hyperbolicity. 

Theorem 11. If p > 4, then A, is a hyperbolic set for f,. 

Pro08 Let x E A,. Assume that x > 1/2; the case where x < 1/2 follows by the 
symmetry of f, about 1/2. We need to find an integer n (which may depend on x) 
such that I(f,")'(x)l > 1. The hyperbolicity of A, then follows from Lemma 4. 

If x 2 p,, we can let n = 1(why?). If x = q,, then f:(q,) = 0 for n 2 2, so 

which is strictly greater than 1 for all n sufficiently large. 
Now concentrate on x between q, and p,.  The Return Lemma ensures that 

there is an n such that f:(x) E [po ,p,). Let I,,,,be the component of I, that 
contains x. There are two cases to consider: either I,, c [q,, p,), or it is not. 

Suppose I,,,c [q,, p,). Since f: maps I,,, monotonically onto [O, 11 (see [I, 
p. 361, [4, p. 71]), or [6, p. 31]), we can partition I,,,,into three subintervals, 
I1 1 ,  J. = L . u K,,,j u R,,,j, where f,"(L,,,j> = LO, pol,  f,"(K,,,;) = (PO,p,), and 
f p I .  Since L,,, c I,,, c [q,, p , )  and R,, c I,,,C [ill.PI). Lemma 
10 ensures that IfJL,, j)l > lL,,,I and If,"(R,, j)l > IR,,,,l. That is, f: must 
do some stretching near both ends of I,,,;. By the Mean Value Theorem applied to 
f,", there is a point y E L,,, and a point z E R,,, such that i(f:)'(y)I > 1 and 
l(f,")'(z)l > 1. Since f:(x) E [po ,p l ) ,  we have x E ~losure(K, , ,~) ,so Y 5 x < z. 
Since f," does not have a critical point in [y, z], the Minimum Principle ensures 
that l(f,")'(x>l > 1. 

Now suppose that I,,, is not a subset of [q,, p,). Once again, partition I,,,. into 
three subintervals, I,, = L,, U K,, U R,, where f$(L,,, j) = [O, pol, f;i<~,, ,  
= (po ,pI ) ,  and f,"(R,, ,) = [p,, 11. As before, x E closure( K,,,j) because f;(x) E 
[p,,  p,). Since x E (q,, p,), one of LIZ,;or R,, is contained in [q,, p,), but, since 
I,,, is not a subset of [q,,p , ) ,  the other one of L,, ,or R,, is not contained in 

[ql,  Suppose that L,, is contained in [q,, p,), and R,,, is not (the other case 
is similar). Since I,,,, c [q,, 11 and I,, n [q,, p , )  + 0, it must be that p1 E I,,;. 
As before, If,"(L,,, j)l > 1 L,,,,I, so the Mean Value Theorem ensures that there is a 
point y E L,,, j  such that l(f,")'(y)l > 1. And I(f,">'(pl>l > 1 since p, is a 
hyperbolic repelling fixed point. Then x E [y, p , ]  and f," does not have a critical 
point in [y, p,], so the Minimum Principle ensures that I(f;>'(x)l > 1. 

Remark. This proof of the hyperbolicity of A, is adapted from the idea of an 
"induced map" or "first return map" for f,; see [2, p. 3411, and see [I,  pp. 75-78] 
for an application of this idea when p = 4. 
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Theorem 12. If p > 4, then A, is a Cantor set. 

Proof: The proof is now as easy as the case p > 2 + 6.Just observe that since 
c, E A,, the hyperbolicity of A, ensures that l(f,">'(c,)l 2 CAn. The rest of the 
proof is unchanged. 
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From the MONTHLY100 Years Ago 

The following are some of the advanced courses of Mathematics 
offered for the year 1899-1900 at the University of Chicago: 
Twisted Curves and Surfaces, Associate Professor Maschke; Projec-
tive Geometry, Professor Moore; Theory of Invariants, Professor 
Bolza; Continuous Groups, Professor Bolza; Theory of Functions of 
a Complex Variable, Professor Moore and Associate Professor 
Maschke; Elliptic Functions, Professor Bolza; Hyperelliptic Func-
tions, Professor Bolza; Abstract Groups, Associate Professor 
Maschke; Elliptic Modular Functions, Professor Moore; Theory of 
Substitution, Professor Moore; Theory of Numbers, Assistant 
Professor Young, etc., etc. 
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