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10737. Proposed by Hassan Ali Shah Ali, Tehran, Iran. Let m and n be positive integers
with n > 2m, and leta; < ay < --- < a, be positive integers such that

went g (5G)0))

Show that there exist two different n-tuples (ey, .. ., €,) and (81, ..., 8,), with entries 0, 1,
and 2, such that 37_, €j = 377, 8; <2mand 37, €ja; = 3 j_, 4;a;.

10738. Proposed by Radu Theodorescu, Université Laval, Sainte-Foy, PQ, Canada. For
t > 0,let my(t) = 350, k"e~*t*/k! be the nth moment of a Poisson distribution with
parameter . Let ¢, (t) = mn(t)/n!. A sequence ag, aj, ... is log-convex if a,% 11 < Gnany2
for all n > 0 and is log-concave if a,% +1 = Anany2 foralln > 0.

(a) Show that mo(¢), m1 (), ... is log-convex.

(b) Show that co(¢), ¢1(2), . . . is not log-concave when ¢ < 1.

(c) Show that co(2), c1(2), . .. is log-concave when ¢ is sufficiently large.

(d)* Is co(t), c1(t), . . . log-concave when ¢t > 1?

SOLUTIONS

Moments of Roots of Chebyshev Polynomials

10448 [1995, 360]. Proposed by Fu-Chuen Chang, National Sun Yat-sen University, Kaoh-
siung, Taiwan. Fix a positive integer n. Let x; = cos ( Qi —Dm/ (2n)) forl <i <n,and
let ¢k = 1 el xk for k € N. Show that

0 ifk=1,3,...,2n—1;

(5)27% ifk=0,2,...,2n 2.

Solution I by Paul Deiermann, Louisiana State University, Shreveport, LA. When k = 0 and
n is odd, the term for j = (n + 1)/2 appears as 0°, which must be taken to be 1 to arrive at
the stated formula and our generalization. We show, for arbitrary integers k£ > 0, that

0 for k odd,

2Ry (=1)P (pn +7) for k even,

where m = |k/(2n)]. The stated problem covers those k for which m = 0.

First note that x,4.1—; = —x;, so the terms of the sum cancel in pairs when £ is odd. We
may thus restrict to the case of k even. Since x; = (™ @/=D/@n) 4 o=in@j-D/@m) /2 the
binomial theorem and a summation of a finite geometric progression imply

Z" —Zz_k( i 21 +e_m2!2n‘.) s kZZ( )eif—,,(k—zq)ei%,l(q—k/z).i

= j= lq—O
_2-k2< )e A 2q>Ze' kD] ok ( )e 24 "’Ze’”‘(" s
q—O Z
k . n 1fq—k/2=pn,p€Z’
_ 2—k ( )e;ﬁ(Zq-k) l—eim@q—k) . _
Z q —el Fa—k 0 ifntq—k/2.

Sincek iseven, g —k/2 = pnimpliesq = pn+k/2. Then,0 < g <k gives—m < p < m.
Also, in this case, €/21 2475 = 7P = (—1)P. Thus, we get

Zx =2" nZ( 1P (pnk+)

p=—m
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Solution Il by Walter Van Assche, Katholieke Universiteit Leuven, Heverlee, Belgium. The
x; are the zeros of the Chebyshev polynomial of the first kind 7;, of degree n. The Gauss-
Chebyshev quadrature formula has the property that the quadrature weights are constant;
thus Gaussian quadrature gives

1< 1! dx
2 2= [ ro=

for every polynomial f of degree at most 2n — 1 (T. J. Rivlin, Chebyshev Polynomials,
Wiley, 1990, pp. 43-46). Taking f(x) = x* for0 <k < 2n — 1 then gives

ST

By symmetry this integral vanishes when k is odd. When k is even, the symmetry and the
substitution x% = ¢ gives

[0 gt [

X — = —_—

-1 1—-x2 Jo 11—t

The latter is Euler’s Beta function B((k+1)/2,1/2) =T'((k+1)/2)I'(1/2)/ T (k/2+1).
Now use Legendre’s duplication formula I'(2z) = 2m)~ 12222121 ()["(z + 1/2) with
2z =k + 1and I'(1/2) = ./ to find the desired results.

Solution Il by Franz Peherstorfer, Johannes Kepler Universitdt, Linz, Austria. For x €
[—1, 1], let T,,(x) = cos(rnarccosx) and U,(x) = sin((n + 1) arccosx )/sin(arccosx)
denote the degree n Chebyshev polynomials of the first and second kind, respectively.
Since Ty, (x) = 2! [T'2;(x — xi) and T;, (x) = nU,—1(x), we have

Ut() 138 1 & (18 1
Tu(x) =Z§x—x,-=z( Z )xm )

k=0

for |x| > 1, where the second equality follows from a series expansion of (1 — x;/x)~L.
On the other hand, we have T;(x) — (x? — )U2_, (x) = 1 for all x € R. Dividing both

sides of this equation by 2 - 1)Tn2 (x) gives
( 1 _Un_l(x))( 1 +Un_1(x))_ L oL
ViZZ1 T -1 L ) 2-DRAx) T \x¥2
as x — 00. Since limy_, 00 XU,—1(x)/ T, (x) = 1, this implies
Up-1(x) _ 1 1
e 0(x—2n+1) @

as x — oo. Taking the series expansion of +/1 — x~2 in (2) and comparing to the series in
(1) gives the desired resulit.

Editorial comment. Wolfdieter Lang noted that the generating function }_, ., cxz* has been
computed explicitly as an elementary function. See W. Lang, On sums of powers of zeros
of polynomials, J. Comp. Appl. Math. 88 (1998) 237-256 for details and further references.
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land), P. Bracken & S. Dorf (Canada), R. J. Chapman (U. K.), H. Chen, E. Cohen (France), D. A. Darling, K. Diethelm (Germany),
C. J. Efthimiou, R. Ehrenborg (Canada), S. M. Gagola Jr., M. E. H. Ismail, N. Komanda, R. L. Lamphere, W. Lang (Germany),
J. H. Lindsey II, O. P. Lossers (The Netherlands), A. Pedersen (Denmark), N. Rosenberg, K. Foltz, H.-J. Seiffert (Germany), S. J.
Smith' (Australia), A. Stenger, R. Stong, M. Vowe (Switzerland), H. Widmer (Switzerland), Anchorage Math Solutions Group,
NSA Problems Group, and the proposer.

472 PROBLEMS AND SOLUTIONS [May



