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Indecomposable Numbers 

10589 [1997,362]. Proposed by Tim Kellel; Fair Oaks, CA. Fix n 2 3, and let S be the set 
of positive integers congruent to 1 modulo n.  A number m E S is called indecomposable 
if it is not the product of two smaller numbers in S. Problem 2 from the 1977 International 
Mathematical Olympiad asks for a number that can be expressed as the product of indecom- 
posable numbers in more than one way. Show that the least such number is the product of 
two numbers each of the form k(k  + n) .  

Solution by the GCHQ Problems Group, Cheltenham, U. K. Define a clone to be a number 
expressible as a product of indecomposable factors in two different ways. Let m be the 
smallest clone. By the minimality of m ,  no indecomposable factor can appear in both 
expressions. Let an + 1 be the smallest indecomposable factor in either expression, and let 
bn + 1 = m / ( a n+ 1). Let cn + 1 be an indecomposable factor in the other expression, and 
let dn  + 1 = m / ( c n  + 1). Thus m = (an + l ) (bn+ 1 )  = (cn + l ) ( d n+ 1 ) .  

Since cn + 1 is indecomposable, an + 1 does not divide it. Also an + 1 does not divide 
dn  + 1 ,  since otherwise dn  + 1 is a smaller clone than m. Therefore an + 1 is not prime 
and factors as pq, where pl(cn + 1 )  and q 1 (dn  + 1). Both p and q are coprime to n. 

Now pl(an + 1 )  and pl(cn + I ) ,  so pl(c - a)n.  Since p is coprime to n ,  we have 
pl(c - a ) ,  so c = rp + a ,  where r > 1 since c > a .  Hence cn + 1 = rpn + a n  + 1 = 
rpn + pq = p(rn +q ) .  Similarly, q I (d -a)n  leads to dn  + 1 = q(sn + p),  where s > 1. 
Thus m = p(rn +q)q(sn+ p). 

Finally, we show that r = s = 1. L e t t  = p(n + q)q(n+ p).  If r > 1 or s > 1 ,  then 
t < m,  so t must not be a clone. Since t = pq x (n+p)(n+q )  and pq is indecomposable, 
pq must divide one of the two factors in the factorization t = p(n + q )  x q(n + p) .  But 
if pq Ip(n +q ) , then pq Ipn, and q In, a contradiction since q is coprime to n .  An identical 
argument shows that pq cannot divide q (n + p).  

With r = s = 1 ,  we have m = p(n + p)  x q (n  +q ) ,as desired. 

Editorial comment. The proposer and the NCCU Problems Group both noted that pq is not 
necessarily the smallest composite congruent to 1 modulo n ,  giving the example n = 336, 
where 336k + 1 is prime for 1 5 k 5 3 , 3 3 6 . 4  + 1 = 5 .269, and 336 .5  + 1 = 41 .41,  
but 5 . 269(5 + 336)(269+ 336) > 41 .41(41 + 336)(41 + 336). 

Solved also by X. Wang, NCCU Problems Group, and the proposer. 

Negatively Correlated Vectors of Signs 

10593 [1997, 4561. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. A 
certain matrix has m rows and n = 1 +k2 columns. All entries of the matrix are f1 ,  and 
the dot product of any two columns is less than or equal to 0. Prove that the total number 
of positive entries in the matrix is at most i m ( n  + k ) ,and construct a matrix that achieves 
this upper bound. 

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. Consider the sum S of the 
dot products of all pairs of columns. Since each dot product is nonpositive, so is S. If row 
i has ri positive entries, then its contribution to the sum is (;) + (niri)ri(n - r i ) ,which-

equals ((2ri- n)2- n )  / 2. 
Substituting ri = (n  + k + b i ) / 2 leads to 

Since S 5 0,  we obtain 
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Since ri = ( 1  +k +k2+b i ) / 2and ri is an integer, bi must be odd, and so 1 -b: 5 0 for all 
i .  Therefore C r = l  bi 5 0.  The total number of positive entries in the matrix thus satisfies 

Achieving the bound requires C r = l  bi = 0 , which occurs only when half the rows have 
bi = +1 and the other half have bi = -1. Thus it is necessary that m be even. One matrix 
that achieves the bound when m = 2 ( n ! )is formed by taking all n !  permutations of a row 
with (n+k +1 )  positive entries and all n !permutations of arow with ( n+k - 1 )  positive 
entries. By symmetry, all of the dot products are equal, and their sum is zero; hence each 
dot product must be zero. 

Editorial comment. John H. Lindsey observed that equality in the bound requires m to be 
divisible by 4. The proposer asked for the smallest number of rows allowing equality to be 
achieved for a given n.  He and Richard Stong independently provided a construction with 

= 2((k;,:,2). 
Solved also by R. J. Chapman (U. K.), J. H. Lindsey 11, K. McInturff, R. Stong, and the proposer. 

n-Tbples Whose Elements Divide Their Sum 

10597 [1997,457]. Proposed by David Cox, Amherst College; Amherst, MA. Fix an integer 
n L 2,  and let d l ,  d2 ,  . . . ,d, be positive integers with no common divisor greater than 1. 
Suppose that di divides d l  + . . . +dn for 1 5 i 5 n .  
( a )Prove that d i d 2 . . . dn divides (d l  + . . . + dn)n-2. 
(b) For each n 2 3,  give an example to show that the exponent in part (a) cannot be made 
smaller. 

Solution by GCHQ Problems Group, Cheltenham, U. K. 
(a )Let p be a prime factor of the product d1d2 . . . d,, and let pk be the highest power of 

p dividing any one of the di . We have pk 1 I di , and thus pk(n-2) 1 (Cdi)n-2. Since 
d l ,  . . . ,d, have no common factor greater than 1 ,  some element di is not divisible by p. 
Furthermore, since p I C d i ,  at least two summands are not divisible by p. Hence the 
highest power of p dividing ndi does not exceed pk(n-2). Repeating this for each prime 
factor shows that ndi divides (Cdi)n-2. 
(b )Le t  dl = 1 ,  d2 = n - 1 ,  and d, = n for 3 5 i 5 n .  Here E d i  = n(n - I ) ,  
which is divisible by each di .  Since dl = 1 ,  the greatest common divisor is 1. We have 
ndi = nnP2(n- 1 ) .  Since n and n - 1 are coprime, the smallest power of n(n- 1 )  divisible 
by nnP2(n- 1 )  is (n (n- 1) )n -2 ,  and thus the exponent cannot be reduced. 

Editorial comment. Other examples submitted for part (b) by various solvers included 

and 
dl = 1 , d i = 2 f o r 2 5 i  s n - 1 , a n d  d n = 2 n - 3 .  

Using Euclid's sequence 2,3 ,7 ,43,  1807, . . ., the San Jose State Problem Solving Ring gave 
an example in which d l d 2 . . . d, = (d l  + . . . + dn)n-2. Another use of Euclid's sequence 
appears in this MONTHLY in the solution of Problem 10532 [1996, 510; 1998, 7751, where 
references are given. 

M. J. Knight and the San Jose State Problem Solving Ring each showed that for given 
n the set D, of n-tuples ( d l ,  d2 ,  . . . ,d,) satisfying the conditions of the problem is finite. 
For example, D2 contains only the pair ( 1 ,  I ) ,  and D3 contains only the triples ( 1 ,  1 ,  I ) ,  
( 1 ,  1 , 2 ) ,  ( 1 , 2 ,  3) ,  and their permutations. The finiteness of D, is equivalent to the finiteness 
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