

A Triangle Inequality: 10644

Mihaly Bencze; GCHQ Problems Group

The American Mathematical Monthly, Vol. 106, No. 5. (May, 1999), p. 476.

Stable URL:

<http://links.jstor.org/sici?sici=0002-9890%28199905%29106%3A5%3C476%3AATI1%3E2.0.CO%3B2-W>

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at [http://www.jstor.org/about/terms.html.](http://www.jstor.org/about/terms.html) JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <http://www.jstor.org/journals/maa.html>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

Let z be a primitive kth root of unity. Then the finite geometric sum $\sum_{i=0}^{k-1} z^{ij}$ is k if *i* is a multiple of k and 0 otherwise. Choose $y > 0$ with $y^k = x$. We obtain

$$
\sum_{i\geq 0} {kn \choose ki+r} x^i = \frac{1}{k} \sum_{i\geq 0} {kn \choose i+r} y^i \sum_{j=0}^{k-1} z^{ij} = \frac{1}{ky^r} \sum_{j=0}^{k-1} z^{-rj} \sum_{i\geq r} {kn \choose i} y^i z^{ij}
$$

$$
= \frac{1}{ky^r} \sum_{j=0}^{k-1} z^{-rj} (1 + yz^j)^{kn} + O(n^{r-1}) = \frac{(1+y)^{kn}}{ky^r} (1 + o(1))
$$

as $n \to \infty$, and this identity also holds with s in place of r. Therefore $b_n \to y^{s-r} = x^{(s-r)/k}$ as $n \to \infty$.

Editorial comment. Jean Anglesio noted that when x is a complex number (but not a negative real) the limit is the principal value of the square root of x. When $x < 0$ the limit does not exist.

Solved also by S. A. Ali, K. F. Andersen (Canada), J. Anglesio (France), D. Beckwith, C. Berg (Sweden), J. C. Binz (Switzerland), P. Bracken (Canada), D. Callan, R. J. Chapman (U. K.), J. E. Dawson (Australia), M. N. Deshpande (India), Z. Franco, C. Georghiou (Greece). T. Hermann, V. Hernandez (Spain), J.-H. Kim, R. A. Kopas, 0.Kuba (Syria), N. E Lindquist, J. H. Lindsey 11, N. Lord (U. K.), S. Mahajan, D. A. Morales (Venezuela), M. Omarjee (France), M. M. Patnaik, G. Peng, H. Qin, H. Salle (The Netherlands), V. Schindler (Germany), R. Shahidi (Canada), N. C. Singer, A. Sofo (Australia), A. Stenger, D. B. Tyler, M. Vowe (Switzerland), M. Woltermann, Anchorage Math Solutions Group, GCHQ Problems Group, WMC Problems Group, and the proposer.

A Triangle Inequality

10644 [1998, 1751. Proposed by Mihdly Bencze, Brazov, Romania. Given an acute triangle with sides of length a, b, and c, inradius *r ,* and circumradius R, prove that

$$
x_0
$$
 and *c*, inradius *r*, and circumradius *R*, *p*
and *c*, inradius *r*, and circumradius *R*, *p*

$$
\frac{r}{2R} \le \frac{abc}{\sqrt{2(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}}
$$

Solution by the GCHQ Problems Group, Cheltenham, England. We have

$$
a2 - (b2 + c2)(1 - \cos A) = b2 + c2 - 2bc \cos A - (b2 + c2) + (b2 + c2) \cos A
$$

= (b - c)² cos A \ge 0,

since *A* is acute. Hence $a^2 \ge (b^2 + c^2)(1 - \cos A) = 2(b^2 + c^2) \sin^2(A/2)$. It follows that $a^2b^2c^2 > 8(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)\sin^2(A/2)\sin^2(B/2)\sin^2(C/2)$, and so

$$
\frac{abc}{\sqrt{2(a^2+b^2)(b^2+c^2)(c^2+a^2)}} \ge 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.
$$

The standard fact $r = 4R \sin(A/2) \sin(B/2) \sin(C/2)$ now yields the required result.

Editorial comment. Several solvers noted that equality holds when the triangle is equilateral and that the result is valid also when the triangle is not acute.

Solved also by J. Anglesio (France), E. Braune (Austria), Z. Čerin (Croatia), J. Melville (Scotland), C. A. Minh, P. E. Nüesch (Switzerland), G. Peng, C. Popescu (Belgium), C. R. Pranesachar (India), S. M. Soltuz (Romania), M. Vowe (Switzerland), R. L. Young, **SAS** Maths Club (India), and the proposer.

Limit of a Recurrence

10648 [1998, 2711. Proposed by N. **I!** Bhatia, University of Maryland, Baltimore County, MD, and *W. O. Egerland, Bel Air, MD.* Let z_1, z_2, \ldots, z_m be $m \ge 2$ points in the complex plane, and let p_1, p_2, \ldots, p_m be positive real numbers such that $p_1 + p_2 + \cdots + p_m = 1$. For ω real and $n > m$, let $z_n = (p_1z_{n-1} + p_2z_{n-2} + \cdots + p_mz_{n-m})e^{i\omega}$. Show that the sequence z_1, z_2, \ldots converges, and determine its limit.

476 PROBLEMSAND SOLUTIONS **[May**