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An Elementary View of Euler's 

Summation Formula 


Tom M. Apostol 

1. INTRODUCTION. The integral test for convergence of infinite series compares 
a finite sum f(k)  and an integral 1;' f(x)  dx,where f is positive and strictly 
decreasing. The difference between a sum and an integral can be represented 
geometrically, as indicated in Figure 1. In 1736, Euler [3] used a diagram like this 
to obtain the simplest case of what came to be known as Euler's summation 
formula, a powerful tool for estimating sums by integrals, and also for evaluating 
integrals in terms of sums. Later Euler [4] derived a more general version by an 
analytic method that is very clearly described in [5, pp. 159-1611. Colin Maclaurin 
[9] discovered the formula independently and used it in his Treatise of Fluxions, 
published in 1742, and some authors refer to the result as the Euler-Maclaurin 
summation formula. The general formula (24) is widely used in numerical analysis, 
analytic number theory, and the theory of asymptotic expansions. It contains 
Bernoulli numbers and periodic Bernoulli functions and is ordinarily discussed in 
courses in advanced calculus or real and complex analysis. This note shows how 
the general formula can be discovered by an elementary method, beginning with 
the diagram in Figure 1. This approach also shows how Bernoulli numbers and 
Bernoulli functions arise naturally along the way. The author has used this 
treatment successfully with beginning calculus students acquainted with the inte- 
gral test. 

2. GENERALIZED EULER'S CONSTANT. Throughout this section we assume 
that f is a positive and strictly decreasing function on [1,m). We introduce a 
sequence Id,} of numbers that represent the sum of the areas of the shaded 
curvilinear pieces above the interval [I ,  n] in Figure 1. That is, we define 

2 3 4 . . .  n - 1  n 

Figure 1. All the shaded regions above [I, 111 fit inside a rectangle o f  area f(1). 
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It is clear that d,,, > d, and that all the shaded pieces can be translated to the 
left to occupy a portion of the rectangle of altitude f(1) above the interval [O, 11, as 
shown in Figure 1. Because f is decreasing there is no overlapping of the 
translated shaded pieces. Comparison of areas gives us the inequalities 0 < d,, < 
d,,, < f(1). Therefore Id,,} is increasing and bounded above, so it has a finite limit 
C( f )  = lim, ,,d(n). We refer to C( f )  as the generalized Euler's constant associ- 
ated with the function f .  Geometrically, C( f )  represents the sum of the areas of 
all the curvilinear triangular pieces over the interval [I ,  m). These pieces can be 
translated to fit inside the rectangle of area f(1) shown in Figure 1 (without 
overlapping), so we have the inequalities 0 < C( f )  < f(1). Moreover, C( f )  - d, 
represents the sum of the areas of the triangular pieces over the interval [n, 4 .  
These pieces can be translated to the left to occupy (without overlapping) a 
portion of the rectangle of height f(n) above the interval [n,  n + 11. Comparing 
areas we find 

O < C ( f )  - d , < f ( n ) ,  n = 2 , 3 , . . . .  (2) 

From these inequalities we can easily deduce: 

Theorem 1. Iff is positive and strictly decreasing on [I,  co) there is a p o s i t i ~  constant 
C(f < f(1) and a sequence {Ef(n)}, with 0 < Ef(n)  < f(n), such that 

Note. Eq. (3) tells us that the difference between the sum and the integral is equal 
to a constant (depending on f )  plus a positive quantity Ef(n) smaller than the last 
term in the sum. Hence, if f (n)  tends to 0 as n + m, then Ef(n)  also tends to 0. 

Proof: If we define Ef(n) = f(n)  + d,, - C(f 1, then (3) follows from the definition 
(I), and the inequality 0 < Ef(n) < f(n)  follows from (2). w 

If f(n) + 0 as n + m, then (3) implies 

Example. When f(x)  = l/x, C( f )  is the classical Euler's constant, often denoted 
by C (or by y ) ,  and (4) states that C = lim, ,,(C;l,,(l/k) - log n). It is not 
known (to date) whether Euler's constant is rational or irrational. Its numerical 
value, correct to 20 decimals, is C = 0.57721566490153286060. In this case, Theo- 
rem 1 says that 

jzC -1 
= logn + C + E ( n ) ,  where0 < E ( n )  < -. 

1 

k = l  k n 

3. VARIOUS FORMS OF EULER'S SUMMATION FORMULA. In this section we 
no longer assume that f is positive or decreasing. At the outset we require only 
that the integral 1;"f(x)  dx exists for each integer n 2 2. The key insight is to 
notice that the difference dl, in (1) can be written as 



When f is positive and decreasing, as in Figure 2, I (k)  is the area of the shaded 
curvilinear triangular piece over the interval [k, k + 11. However, ( 5 )  and (6) are 
meaningful for any integrable f .  

Figure 2. Geometric interpretation of the integral 
Z(k)  as the area of the shaded region. 

The integrand in (6) has the form u du, where u = f(k)  - f(x)  and u = x + c ,  
where c is any constant. If we choose c = -(k + 1) and integrate by parts 
(assuming that f has a continuous derivative), the integrated part vanishes and the 
integral I (k)  reduces to 

I ( k )  = j k i l ( x  - k - 1) f ' ( x )  dx. 
k 

In this integral the dummy symbol x varies from k to k + 1,so the quantity k in 
the integrand can be replaced by [XI, the greatest integer Ix. Make this 
replacement and substitute in (6) to find 

n -1 n - l  

d,, = zI ( k )  = zj k t l ( x  - [ x ]  - 1) f ' ( x )  dx 
k = l  k = l  k 

Now use the definition of d ,  in (1) and rearrange terms to obtain: 

Theorem 2. (First-derivative form of Euler's summation formula). For any function 
f with a continuous derivative on  the interval [I,n ]  we have 

The last two terms on the right represent the error made when the sum on the 
left is approximated by the integral 1;"f(x)  dx.The formula is useful because f 
need not be positive or decreasing. In fact, f can be increasing or oscillating. 
Variants of this formula will be obtained as we attempt to deduce more precise 
information about the error. 

The factor x - [XI is a nonnegative function with period 1. If f '  has a fixed sign 
(as it has when f is monotonic), the integral term in the error has the same sign as 
f ' .  To decrease the error it is preferable to multiply f ' (x)  by a factor that changes 



sign so that some cancellation takes place in the integration. To introduce sign 
changes, we translate the function x - [ x ] down by i and consider the new 
function x - [ x ]- i whose graph is shown in Figure 3. The integral term in the 

Figure 3. The periodic function x - [x]- i changes sign. 

error can now be written as 
1 n 

x - [ x ] ) f t ( x ) d x =/ n ( x - [ x ]- f t ( x ) d x +  / f l ( x ) d x .
1 1 

The last term is equal to i { f ( n )- f ( l ) } .  Using this in (7) we obtain the following 
variant of the first-derivative form of Euler's summation formula: 

Further variations will be obtained by repeated integration by parts in the second 
integral on the right of (8). 

The factor x - [ x ]- i has the value - i when x is an integer. We modify this 
factor slightly to make it vanish at the integers, a property that is desirable when 
we integrate by parts. To do this we introduce Pl(x), the first Bernoulli function: 

1 
x - [ x ]- - if x # integer

Pl(x>= 2 (9) 

O if x = integer. 

The error integral does not change if the factor x - [ x ]- is replaced by Pl(x)  
because the two factors differ only at the integers. Therefore (8)can be written as 

1if ( k )  = / ' l f ( x )  + l " P 1 ( x ) f l ( x )dx + ? { f ( n )  + f ( 1 ) ) .  (10)  
k = l  1 1 

Note the contrast between (10)and (3),which explicitly displays the generalized 
Euler's constant C ( f ). To make (10)resemble (3)more closely, we assume that the 
improper integral l,"Pl(x)f ' ( x )  dx converges. Then we can write 

and (10)takes the form 



where 

and 

Eq. (11)has exactly the same form as (3),but (11) is more general because f is not 
required to be positive or monotonic. The only restrictions on f are continuity of 
f' and convergence of the improper integral 

The improper integral in (13) converges if, and only if, 

A sufficient condition for convergence is that j;"lfl(x)l dx converges, or equiva- 
lently, that 

03 


lim L l f t ( x ) l  dx = 0 .  
n + m  

To see this, note that the Bernoulli function Pl(x)  is bounded; in fact, Figure 3 
shows that lP1(x)l I $ for all x ,  so (14) follows from (15). 

Example. When f ( x )  = l / x  we have f l ( x )  = - 1/x2  and 

Therefore (15) is satisfied and (12) expresses Euler's constant as an integral: 

1c = - - / = p l ( x ) & ,-
2 1 x 2  

4. FURTHER ANALYSIS OF THE ERROR TERM. Alternate forms of both the 
error term and the formula for the generalized Euler's constant can be obtained by 
repeated integration by parts. First we introduce a new function P2(x) whose 
derivative is 2P1(x)at all noninteger values of x. The factor 2 is used so that P2(x )  
is the second Bernoulli periodic function that appears in Euler's summation 
formula. Therefore we require that 

where c is a constant to be specified later. The function P2 is quadratic on the 
interval [O,1].In fact, P2(x)= x2  - x + c if 0 I x I 1. Its graph is a parabolic arc 
joining the points (0, c )  and (1, c). Outside this interval the graph (shown in Figure 
4)  consists of horizontal translations of this parabolic arc because P, has period 1. 
To see this, we use the fact that P, has period 1 and that jiP,(t) clt = 0, which 
implies that j ,b~ , ( t )dt = 0 for any interval [a, b ] of length 1. Therefore 



Figure 4. Graph of P,(x) = 2/$P,(t) dt + c 

Because of periodicity, P, has the constant value c = P,(O) at the integers. 
Integration by parts shows that the integral in (10) is 

provided that f" is continuous. Repeated integration by parts leads to the general 
form of Euler's summation formula, which involves higher order derivatives of f 
and higher order periodic Bernoulli functions that represent polynomials on the 
unit interval [0,1]. To see exactly how the Bernoulli functions evolve in the process 
we follow the method of the foregoing section and integrate the periodic function 
3P2(t) from 0 to x to obtain another periodic function P3(x) whose derivative is 
3P2(x). To guarantee that the integrated function P3(x) is periodic with period 1 
we need l;P,(t) dt = 0. This property governs the choice of the constant c in (16). 
The integral of the quadratic polynomial x 2  - x + c from 0 to 1 is equal to c - i, 
so we choose c = iand take 

Euler's summation formula can now be restated as follows: 

Theorem 3. (Second-derivative form of Euler's summation formula). For any func- 
tion f with a continuous second derivative on the interval 11,n] we have 

Moreover, $ the improper integral 1;" If" (x) I dx converges then we also haw 

where 

and 



Figure 5.  Graph of the periodic Bernoulli function P,(x) = 3/dP2( t )  dt. 

To improve the error estimate we integrate P2(t) from 0 to x and define the 
Bernoulli function P3(x) = 3/tP2(t) dt so that P;(x) = 3P2(x). There is no need 
to add a constant in this case because, on the unit interval [O, 11, P3(x) = x3 - $x2 
+ $x, and /dP3(t) dt = 0. The function P, has period 1because P2 has period 1 
and j d ~ , ( t )  dt = 0. The graph of P3 is a bounded piecewise cubic curve, shown in 
Figure 5. Note that P,(x) vanishes at the integers. Integration by parts over [I,  n] 
gives us 

provided f(3)  is continuous. This equation, together with Theorem 3, gives a 
third-derivative form of Euler's summation formula in which the second integral on 
the right of (17) is replaced by $/; '~,(x)f(~)(x) dX. The corresponding changes in 
(18) and (19) are replacement of the integrals by $/ ;"~,(x)f(~)(x)dx and 
+j;p3(x) f ( 3 ) ( ~ )dx,respectively. 

5. BERNOULLI NUMBERS AND THE GENERAL FORM OF EULER'S SUM- 
MATION FORMULA. The strategy for obtaining a general version of Euler's 
summation formula is now evident. Starting with the Bernoulli periodic function 
P,(x) in (9) we introduce, in succession, periodic functions P,(x), P,(x), . . . , with 
period 1, and a sequence of constants B, such that 

P,(x) = k/ '~ , - , ( t )  dt + B, for k r 2, (20)
0 

where each B, is chosen so that 

Periodicity implies that P,(O) = P,(1), and (21) shows that each of these values is 
B,. As already noted, on the closed interval [0, 11 each function P,(x) is a 
polynomial of degree k when k = 2 or 3. [The case k = 1 is special; P,(x) is a 
linear polynomial x - only on the open interval (0 , l )  and is discontinuous at the 
endpoints.] It is clear (and easily proved by induction) that on the closed interval 
[0, 11the function defined by (20) is a polynomial of degree k if k 2 2. We denote 
this polynomial by B,(x), the usual notation for Bernoullipolynomials. The first few 
are 



The Bevnoulli peviodic functions are periodic extensions of these polynomials given 
by P,(x) = B,(x - [x]). The constants B, = P,(O) = Pk(l) are called Bernoulli 
numbers. The first few are 

Next we show that our definitions of Bernoulli numbers and polynomials are 
consistent with the usual definitions, provided we take B,(x) = 1and B, = 1. Our 
definition in (20) shows that the successive derivatives of these polynomials are 

and hence 

On the other hand, the Taylor expansion of any polynomial B,(x) of degree k is 
given by Bk(x) = C:=, B ~ ) ( o ) x " / ~ ! ,so (22) implies 

Taking x = 1 in (23) and noting that B,(1) = P,(1) = B, for k 2 2, we find that 
(23) becomes 

k 

B = B f o r k  2 2. 
r.=O 

This is the usual recursion formula for defining Bernoulli numbers (starting with 
B, = I), and (23) is one of the standard ways of defining Bernoulli polynomials in 
terms of Bernoulli numbers. Consequently, the numbers and polynomials that 
appear in our treatment are the usual Bernoulli numbers and Bernoulli polynomi- 
als that appear in the literature; see [I, p. 2651, [2, p. 2511, or [5, pp. 160-1631. 

It is well known that the Bernoulli numbers B, with odd index k 2 3 are zero, 
so only Bernoulli numbers with even index appear in the general form of Euler's 
summation formula. It is also known [S, p. 5331 that on the interval [0, 11 the 
Bernoulli polynomials satisfy the following inequalities for k 2 1: 

1 2 ( )  5 I and IB~,+L(x)I5 (2k + l)I&,I. 

The method we have outlined leads to the following odd-order derivative 
version of Euler's summation formula. A proof is easily given by induction on the 
order 2m + 1. 

Theorem 4. (General form of Euler's summation formula). For any function f with 
a continuous derivative of ovder 2m + 1 on the interval [I ,  n] we have 



Moreover, if the impvoper integval /; If (2" '+1)(x)  dx converges then we also have ( 

and 

Example. When f ( x )  = l / x  we have f  (2"7'1)(x)  = - ( 2 m  + 1 ) ! / ~ ~ " " ~ ,and (26) 
gives the following expression for the classical Euler's constant: 

1 B2 B4 B2,1, j;..P211,+l(x)c = - + - + - + . . . +  ---- (28)2 2 4 2 m  X2n1 + 2  dx. 

The corresponding error term (27) becomes 

One is tempted to let m + in (28) and obtain an infinite series for Euler's 
constant. However, the integral in (28)does not tend to 0 as m + and, in fact, it 
can be shown that the infinite series CB2, / (2k)  diverges rapidly [see 6, p. 5291, so 
(28) is not very useful for calculating C. Nevertheless, as we show in the next 
section, (25) and (27)can be used to calculate C very accurately. 

6. CALCULATION OF EULER'S CONSTANT. We use Euler's summation for- 
mula to calculate the first 7 digits in Euler's constant. Take f ( x )  = l / x  in (25)and 
rewrite it as 

C = C" -1 
- logn - E f ( n ) ,  

/<=I  k 

where E f ( n ) is given by (29).Taking m = 3 in (29)we find 

1 B2 B4 B6 m P 7 ( ~ )&
E f ( n ) = - - - - - - - + /  -

2n 2n2 4n4 6n6 x8  

Using the inequality IP7(x)l I 71B61 = i,we get 



and (30) can be written in the form 

where 0 < lE(n)l 1 1/42n7. Using a hand calculator that displays 12 digits we 
find k-I = 2.92896825381 and log 10 = 2.30258509299. If n = 10 the sum of 
the error term E ( n )  plus the term with 252n6 in the denominator in (31) is too 
small to influence the seventh digit. Neglecting these terms and retaining 8 digits 
in the calculation we find 

= 0.62638316 - 0.05000000 + 0.00083333 - 0.00000083 
= 0.57721566 

This calculation, using rn = 3 and n = 10 in (29) and (30), which guarantees 
7 decimal places, actually gives the first 8 correct digits of C. Knuth [7] used (29) 
and (30) with rn = 250 and n = 10,000 to calculate the value of C to 1,271 
decimal places. 

This note outlines only one application of Euler's summation formula. Others 
can be found in Knopp's treatise [6]. One of them uses the increasing function 
f ( x )  = log x to derive Stirling's asymptotic formula for the logarithm of n ! .  Euler's 
summation formula and its relation to Bernoulli numbers and polynomials pro- 
vides a treasure trove of interesting enrichment material suitable for elementary 
calculus courses. 
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