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Marriage, Magic, and Solitaire 

David B. Leep and Gerry Myerson 

1. SOLITAIRE. Here's a solitaire game you can always win. 
Deal out a deck of cards, face up, into a 4 X 13 array. The object of the game is 

to select 13 cards, one from each column, in such a way as to get one card of each 
denomination. 

It turns out that it is always possible to make such a selection. The proof is a 
simple application of Hall's Marriage Theorem, as we show in Example 1 in the 
next section. In Sections 3 and 4, we identify winning the solitaire game with 
decomposing a semi-magic square into a linear combination, with positive integer 
coefficients, of permutation matrices. The remainder of the paper discusses the 
number of permutation matrices needed to express a given semi-magic square. 

2. MARRIAGE. Suppose there are sets A , ,  A? ,  . . . , A,,, and you wish to know 
whether there exist distinct objects x , ,  x ? , .  . . , x,, such that x ,  is in A , ,  x, is in 
A 2 , .. . , and x, is in A,,-we'll call this a transuersul. If any A, is empty, then it's 
clear that x, does not exist; a simple necessary condition for the existence of a 
transversal is that #Aj 2 1 for all j-we write # S  for the cardinality of the set S .  

If among the sets A, ,  . . . , A,, there are two whose union has only one element, 
then there can be no transversal. More generally, a necessary condition for the 
existence of a transversal is that # U,, ,A > #J for every index set J c 11,. . . ,n}.

'1

Hall's Marriage Theorem states that this simple necessary condition is also 

sufficient: 

Theorem 1. There exist distinct x, ,  . . . , x,, such thut x, EA, for all j i f  und only i f  
#U,., A, 2 # J  for ull J c { I , .. . ,n}. 

Many proofs are known, and the reader with access to combinatorics and/or 
graph theory textbooks will have little difficulty finding one, so we do not present 
one here. The compilation [2] contains Hall's original proof, and the spiffy proof of 
Halmos and Vaughan. The interpretation wherein the "objects" are men and A, is 
the set of suitable marriage partners for the jth woman is the origin of the name, 
"Marriage Theorem." 

The application to the solitaire game is as follows. 

Example 1. Let the objects be the 13 denominations, and let A, be the set of all 
denominations of cards in the jth column. For example, if column 7 has an ace, a 
deuce, and two jacks, then A, = {ace, deuce, jack}. Any collection of k columns, 
1 5 k 5 13, contains 4k cards, hence contains cards of at least k different 
denominations (since there are only 4 cards of each denomination). But this is 
precisely the condition for Hall's Theorem to apply, and it tells us we can choose a 
different denomination from each column. 
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3. MAGIC. That could be the end of the discussion, but instead we approach the 
problem from a different point of view, in order to introduce the topic we really 
want to talk about: semi-magic squares. Much of what we have to say applies, 
mutatis mutandis, to doubly-stochastic matrices, so there should be something here 
to appeal to a variety of mathematical tastes. 

Having dealt out the cards, construct a 13 X 13 matrix A, as follows. Each 
column in A corresponds to a column of cards, and each row to a denomination. 
The value of a, ,  (the usual notation for the entry in row i ,  column j of A ,  although 
we also write A(i, j )) is then taken to be the number of cards of denomination i in 
column j.  In Example 1, we would have a,,, ,= 1, a,,,,,= 2, and a,,,,,, ,= 0. 

The matrix so constructed enjoys the following properties; 
1. its entries are non-negative integers, 
2. the entries in each row add up to 4 (because there are exactly 4 cards of each 

denomination), and 
3. the entries in each column also add up to 4 (because there are exactly 4 cards 

in each column of cards). 
Thus, the matrix is a semi-magic square; a square array of non-negative integers 

having constant line-sums. "Line-sums" means both row and column sums. The 
common value of the line-sums is called the magic constant of the semi-magic 
square, and is denoted by m .  In a magic square, the entries along each diagonal 
also add up to m ,  but we do not invoke this condition in the sequel. 

Hall's Theorem has the following consequence: 

Theorem 2. A non-zero semi-magic square has a transversal all of whose elements are 
non -zero. 

In this context, "transversal" means a set of entries meeting each line exactly 
once (that is, one entry from each column, each from a different row). For, let the 
columns correspond to sets, and the rows to objects, and let a , ,  non-zero mean 
that object i is in set j.  In any k columns, the non-zero entries add up to km.  
Restricting our attention to those k columns, if fewer than k rows meet those 
columns in non-zero entries, then at least one row meets those columns in entries 
that add up to more than m ;  but this is impossible, since the entries in each row 
add up to exactly m .  Thus, Hall's Theorem applies, and there is a choice of a 
different object from each set; a non-zero entry from each column, each from a 
different row. 

In the 13 X 13 semi-magic square constructed in Example 1 from an array of 
cards, a transversal corresponds to a selection of one card from each column, each 
of a different denomination. Thus we have a second way to use Hall's Theorem to 
prove that we can always win this game of solitaire. 

4. PERMUTATIONS. Perhaps the simplest non-zero semi-magic squares are those 
with all line-sums 1, the permutation matrices. A permutation matrix is a matrix of 
zeros and ones, the ones forming a transversal. The name arises from the 
association of each such matrix A to a permutation a via a , ,  = 1 if and only if 
a ( i )  = j .  This association is a group isomorphism from the multiplicative group of 
n x n permutation matrices to the group of all permutations of { I , .  . . , n}.  

We can reformulate Theorem 2: if A is a non-zero semi-magic square, then 
there is a permutation matrix P such that A - P has non-negative entries. But 
then A - P is itself clearly a semi-magic square, whence, by induction, we deduce 
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Theorem 3. Eveiy semi-magic square can be expressed as a sum of permutation 
ma trices. 

Theorems 2 and 3 are due to K6nig [3]. As an illustration of Theorem 3, we 
note that 

A doubly-stochastic matrix is a matrix with non-negative real entries and all 
line-sums equal to one. Dividing any non-zero semi-magic square by its magic 
constant yields a doubly-stochastic matrix. Birkhoff [ I]  proved that every doubly- 
stochastic matrix is a convex combination of permutation matrices; see also 
[6, Theorem 5.4 of Chapter 51. 

An expression of a semi-magic square as a sum of permutation matrices is, in 
general, not unique. We may ask for an expression that uses as few distinct 
permutation matrices as possible. The rest of this paper is an attempt to come to 
grips with this and related questions. 

5. THE BASIS. The concepts of permutatioil matrix and semi-magic square gener- 
alize readily to square matrices with entries from any ring R with unit. Let the unit 
element of R be 1. Then a permutation matrix over R is, as before, a matrix of 
zeros and ones, the ones forming a transversal. A constant line-sum matrix over R 
is a square array of elements of R having all line-sums equal. We reserve the term 
"semi-magic square" for a constant line-sum matrix over the integers with non- 
negative entries. Any linear combination of permutation matrices with coefficients 
in R is a constant line-sum matrix over R. We have seen that any semi-magic 
square with non-negative integer entries is an integer-linear combination of per- 
mutation matrices, and we now show that this, too, generalizes to constant 
line-sum matrices over R. The case n = 1 is trivial, and a 2 x 2 constant line-sum 
matrix must look like 

Thus, we may assume n 2 3. Let B1,be the set of all permutation matrices 
corresponding to those transpositions and 3-cycles that move 1, together with the 
identity matrix. That is, A?,, contains the permutations of the form ( l j ) ,  2 I j I n ,  
and those of the form ( l jk) ,  2 < j 5 n ,  2 2 k 2 n ,  j + k, and the identity. Then 

is a linearly independent set, over any ring whatsoever. For if C,", ,,>a, P, = 0,  
then a(,!,, must be zero, since P(,,,, is the only matrix in B1,with a non-zero entry 
in row J ,  column k. And if all the a( are zero, then a(,,, must be zero, since 
each P(,,, has a one in the first row that none of the others has. Finally, a. must 
be zero. 

Now let A be any n x n constant line-sum matrix over R. Let B = A -
C,,k ~ l k P ( l l , , ) ,taking the sum over all j and k distinct from each other and one; 
then b,, = 0 for all these j and k. Let C = B - Cy=, b,,P( ,,,. Then C has all 
line-sums zero, since its first row is entirely zeros. Each column of C, other than 
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the first, has n - 1 zeros, hence, n zeros; then, looking across the rows, we see 
that all the entries in the first column must be zero as well. Thus, A = Caj,P(!j,,
+ Cbl!P(li, expresses A as a linear combination of permutation matrices (with 
coefficients in the ring generated by the entries of A). 

Summing up, we have proved: 

Theorem 4. For uny ring R with unit, the set of ull R-lineur combinutions of elements 
of A?,,is the set of ull n x n constant line-sum matrices with entries in R. 

A closer look at the proof leads to our next result. 

Theorem 5. Each n X n permutation matrix cun be written as a * 1-combinution of 
at most 2n - 1 elements of B,, (meaning, a linear combination in which each 
coefficient is 1 or -1). 

Proof: Let A in the proof of Theorem 4 be a permutation matrix. For each j, 
2 I j I n, there is at most one k, k # 1, k # j, such that aj, = 1. Thus, at most 
n - 1 of the coefficients a(,j,, are one (the rest being zero), and no two of these 
have the same value of j. So, the first row of B = A - Ca(lj,,P~lj,, takes all n of 
its entries from { - 1,0, I}, and b(lj, is in { -1,0, I} for all j. 

That Theorems 4 and 5 proclaim a special property of SFn can be seen from the 
following equation, valid for any n 2 4: 

2 1  = (12) + (23) + (34) + (41) - (1234) - (4321), ( I )  
where we have adopted the notational convenience of replacing a permutation 
matrix with the permutation it represents. It is easy to check that the six matrices 
on the right are linearly independent over any ring R that does not have a 
non-zero element x satisfying x + x = 0; but the identity matrix cannot be 
expressed as a * 1-combination of any linearly independent set that includes these 
six matrices, and it cannot be written as an R-linear combination at all, if R has no 
element x satisfying x + x = 1(for example, if R is the integers). 

This example suggests a question, for which we do not know the answer: 
given n, for which integers m does there exist an n x n semi-magic square A, 
a linearly independent set of permutation matrices {PI,. . .,4.1,and non-negative 
integers e l , .  . .,c,. with gcd(c,, . . . ,c,.) = 1, such that mA = Cjc,P,? Equation (1) 
shows that we may take m = 2 for every n 2 4; indeed, from 

( m  - 2 ) I  = (12) + (23) + ... + ( m  - 1m)  + ( m  1) 

- (  12 . . .m)  - ( m m  - l . . . l )  

it is easy to verify that for any n we can take any m not exceeding n - 2. 

6. HOW MANY? (BIG FIELDS). It is easy to see that the set of all n X n 
constant line-sum matrices over a field F forms a vector space over F. What is the 
dimension of this space? 

Theorem 6. The dimension of the vector space of all n x n constant line-sum matrices 
over a field F is n2 - 2n + 2. 

This can be seen in several different ways. 
1) Assign arbitrary values to aij ,  1 I i I n - 1, 1 5 j I n - 1, and also to a,,,, 

making (n - 1)' + 1arbitrary choices in all. There is a unique choice of each a,,,, 
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2 5 i I n - 1, and each a,;, 1 I j I n - 1, that makes the corresponding row or 
column sum equal to the sum of the entries in the first row, and then a unique 
choice of a,, to complete the constant line-sum matrix. 

2) To be a constant line-sum matrix is to satisfy 2n - 1 equations of the form, 
"the entries in row 1add up to the same number as the entries in a different line." 
There is one dependence relation among these equations, since the sum of all the 
row sums equals the sum of all the column sums, so the vector space has 
codimension 2n - 2 in the vector space of all n x n matrices, which means that 
the dimension is n2 - (2n  - 2). 

3 )  The basis 9,has ( n  - l)(n - 2) elements of the form (ljk),  n - 1 of the 
form ( l j ) ,  and the identity, making n2 - 2n + 2 in all. 

It follows from Theorems 4 and 6 that, over a field, any n X n constant line-sum 
matrix can be expressed as a linear combination of n2 - 2n + 2 or fewer permuta- 
tion matrices. It also follows that, over an infinite field (or, indeed, a sufficiently 
large finite field), there exist constant line-sum matrices that cannot be expressed 
as a linear combination of fewer than n2 - 2n + 2 permutation matrices. This is 
based on the observation that no vector space over an infinite field is the union of 
finitely many proper subspaces, which is a corollary to a technical lemma that we 
have relegated to the appendix. 

7. HOW MANY? (NON-NEGATIVE INTEGERS) (THEORY). Life is somewhat 
different over a (small) finite field, but we postpone discussion of that situation 
until we have considered the integers. Results about linear combinations with 
positive integer coefficients do not follow trivially from results about fields, but 
they do follow: 

Theorem 7. Each n X n semi-magic square can be expressed as a linear combination, 
with positive integer coefficients, of n2 - 2n + 2 or fewer permutation matrices. 

Proofi We follow the argument by which Marcus and Ree [S] proved that every 
doubly-stochastic matrix is a convex combination of n2 - 2n + 2 or fewer permu- 
tation matrices. Let A be a non-zero n X n semi-magic square (if A = 0, there is 
nothing to prove). By Theorem 2 we know there is a permutation matrix P, such 
that A - PI has non-negative integer entries. Choose m ,  as large as possible, 
subject to A,  =A - m,P, having non-negative entries. Note that P, has a one in 
some spot where A, has a zero and that the magic constant of A, is strictly less 
than that of A.  Now apply the same procedure to A,, and iterate to termination. 
Termination must occur, since the magic constants form a strictly decreasing 
sequence of non-negative integers. When the procedure terminates, we have 
A = m,Pl + ... +m,.P,. for some r. But the matrices P,,.  . .,P,. are linearly inde- 
pendent (over, say, the rationals), since each has a one in a spot where its 
successors all have zero. So, r is no greater than the dimension of the space 
spanned by all the n X n permutation matrices, and we know from Section 6 that 
this dimension is n2 - 2n + 2. ¤ 

We would like to know whether there is an "integer proof" of Theorem 7, that 
is, a proof that does not rely on embedding the integers into a field and using 
dimension, a vector space concept. 

Theorem 8. For evevy n there exist n x n semi-magic squares that cannot be expressed 
as a linear combination, with non-negative integer coefficients, of n2  - 2n + 1permu-
tation matrices. 
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We give three proofs. 

Firstproof: Let A be an n x n constant line-sum matrix with non-negative rational 
entries, and assume that A is not a linear combination with rational coefficients of 
n2 - 2n + 1 permutation matrices. Such matrices exist by a corollary to the 
technical lemma in the appendix. Let m be a common multiple of the denomina- 
tors of the entries of A. Then mA is a semi-magic square, and is not expressible as 
a linear combination with rational coefficients (nor, a fortiori, with non-negative 
integer coefficients) of n2 - 2n + 1permutation matrices. For, if there were such 
an expression for mA, then dividing through by m would give an expression for A 
as a rational linear combination of n2 - 2n + 1 permutation matrices. rn 

Second proof: We count the number of n x n semi-magic squares with magic 
constant N, and the number of linear combinations of n2 - 2n + 1 permutation 
matrices with positive integer coefficients adding up to N, and we see that, if N is 
large enough, there are too many of the former to be accounted for by the latter. 

Given integers a i j  with N(n - 2)/(n - 1)' 5 a . .< N/(n - 1) for 1 < i I n - 1 
I J  -

and 1 I j I n - 1, there exist non-negative integers ail,, 1 I i I n, and 
1 5 j < n, such that A is a semi-magic square with magic constant N. Thus, the 
number of squares with magic constant N is at least c , ~ ( " - ~ ) ~ .  Here and in the 
following discussion c,, c,, . . . depend on n but not on N, and the exact nature of 
the dependence is irrelevant. 

To count the number of non-negative integer linear combinations of n2 - 2n + 1 
permutation matrices, with all line-sums equal to N, we note first that there are 

( = c2 ways of choosing the permutation matrices Having chosen them, we 
(17 

have only to count the number of expressions C ; I ; ~ " + ~ ~ ~ P ,  subject to the condi- 
tions La j  = N and a j  2 0 for all j. But the number of ways to meet the conditions 
is (N+ ( n  - 1 )  - 1 1,which is a polynomial in N of degree (n - 1)' - 1and is thus 

(11 - 1l2 - 1 

bounded above by C,N("- ')~- '  for some c,. So, the total number of semi-magic 
squares of magic constant N representable as non-negative integer linear combina- 
tions of n2 - 2n + 1permutation matrices is at most c, N ( " ~ ' ) ~ ~ ~  =,where c, c,c,. 
If N > e 4 N ( I I  -1)'-1 , so there mustis large enough, c , ~ ( " - ~ ) '  be semi-magic 
squares that cannot be expressed as a non-negative integer linear combination of 
n2 - 2n + 1permutation matrices. rn 

We could use this second proof to estimate the value of N needed, but we have 
thrown too much away for the estimate to be any good. Our third proof actually 
constructs the object whose existence is established by the first two proofs. 

Third proof: Let PI ,  . . . , P,, d = n2 - discussed in 2n + 2, be the special basis 9,, 
Section 5 ,  ordered in such a way that all the 3-cycles come first, then the 
transpositions, finally, the identity. Let A = C$,cjP,, where cj is any sequence of 
positive integers growing fast enough to satisfy cj > Ck::(j - k)c, for all j (the 
sequence 1,2,5,13,34,.. . of alternate Fibonacci numbers will do, barely). We 
claim that A cannot be expressed as a positive integer linear combination of fewer 
than n2 - 2n + 2 permutation matrices. 

Recall that each P, has a "special spot" where it has a one and where each P,, 
k > j, has a zero. Given any j, and any matrix B, we write B(j)  for the entry of B 
in the special spot of P,. 

424 MARRIAGE, MAGIC,AND SOLITAIRE [May 



Let A = Xi=,a,Q, for some positive integers a; and some permutation matrices 
Q,. Since A(1) = c, 2 1, we must have Qj(l) = 1 for some j. Re-ordering, if 
necessary, we may assume Q,(l) = 1. It follows that a, = c,. Let A, = A - alQ1. 

Now suppose that for 1 I j 5 k - 1 we have Q,(j) = 1, 1 I a j  ICi=,c,, 
and Aj  = A,-, - ajQj = A  - a l e ,  - ... -ajQj. Note that c, 2 A(k) I Cf=,cj. It 
follows that 

k - 1  I(-1 j k - l  k 

1 2 c, - C ( k  - j )c j  = c, - x x c, 5 c, - x a, 5 A,-,(k) 5 c;. 
j=1 j = l  r = l  j =  1 j = l  

Since A,-,(k) 2 1, we must have Q,(k) = 1 for some j 2 k. Re-ordering, if 
necessary, we may assume Q,(k) = 1. Then 1 2 a, 5 Cf=,c,. 

By induction, we see that Q,(j) = 1 for 1 I j Ir z 2  - 2n + 2, and r. = 

n2 - 2n + 2. 

8. HOW MANY? (NON-NEGATIVE INTEGERS) (PRACTICE). Let's look at 
some numerical examples. The third proof of Theorem 8, in the case n = 3, 
produces the semi-magic square 

with magic constant 55, so this matrix cannot be written as a positive integer linear 
combination of fewer than 5 permutation matrices. But the same is true of the 
semi-magic square 

with magic constant 7. For to account for the entry in the upper left corner, either 
the identity or (23) must be involved. By symmetry, it doesn't matter which, so let's 
assume I is a summand. Subtracting I leaves a one in the (2,2) position, which 
forces involvement of (13), and a one in the (3,3) position, which forces involve-
ment of (12). Subtracting these leaves a matrix with two non-zero entries in each 
line, so two more matrices are needed; in total, 5. 

By brute force, one can show that this result is sharp, that is, that every 3 x 3 
semi-magic square with magic constant less than 7 can be written as a positive 
integer linear combination of 4 or fewer permutation matrices. 

Theorems 7 and 8 imply that every 4 X 4 semi-magic square can be written as a 
non-negative integer linear combination of 10 permutation matrices, and that there 
exist 4 X 4 semi-magic squares that cannot be written as a non-negative integer 
linear combinations of 9 permutation matrices. A 4 x 4 semi-magic square that 
requires 10 permutations is 

with magic constant 31; we have been unable to find an example with a smaller 
magic constant. The proof that this semi-magic square requires 10 permutations 
reveals a method for producing, for any n ,  an n x n semi-magic square that 
cannot be represented by (that is, written as a non-negative linear combination of) 
fewer than n2 - 2n + 2 permutation matrices. 
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Let A = c;=,ajQj with positive integers a, and permutation matrices Q,. Since 
A(2,3) = 1, there must be some j such that Qj(2, 3) = 1. We may assume Q,(2,3) 
= 1. Then a, = 1. Let A,  = A - a l e l .  

Now A(2,4) = 1 and Q,(2, 4) = 0 (since Q,(2, 3) = 1-this is a refinement in 
the reasoning of the third proof of Theorem 7).  So A1(2, 4) = 1, and we may 
assume Q2(2,4) = 1and a, = 1. Let A, = A ,  - a,Q,. 

Since 1 4 A2(3, 2) I 3, we may assume Q3(3, 2) = 1and 1 4 a, 4 3. 
By similar reasoning we find Q,(3,4) = Q,(4,2) = Q6(4, 3) = 1, 1 4 a, I 2, 

1 < a ,  5 5 , a n d l  s a 6 4 7 . L e t  A6=A-C,6=,a jQ, .  
Now comes the tricky part; showing that A6(l,  1) 2 1 (whence Qj(l ,  1) = 1 for 

some j 2 7). If Q3(1, 1) = 1 then, since Q, is a permutation matrix and Q3(3, 2) = 1 
we must have Q,(2,3) = 1 or Q3(2, 4) = 1. Thus, Q,(l, 1) 1Q3(2, 3) + Q,(2,4). 
Similarly, Q5(1, 1) I Q5(2, 3) + Q5(2, 4) and Q6(1, 1) I Q6(2, 4) + Q6(3, 4). It 
follows that 

Since A(1, l )  = 5, we have established A6(1, 1) 2 1.With the obvious definitions, 
the same sort of reasoning shows that 2), A&, 3), and A&, 4) are all 
positive, so r 2 10. 

We can prove that any 4 X 4 square with magic constant 14 or less can be 
written with fewer than 10 permutation matrices, but we have been unable to close 
the gap between 14 and 31, or the much larger gaps in our knowledge for n > 4. 

9. HOW MANY? (SMALL MODULI). Let q be a positive integer, and let A be 
an n X n constant line-sum matrix over Z/qZ. We showed in Section 6 that A can 
be expressed as a Z/qZ-linear combination of no more than n2 - 2n + 2 permu- 
tation matrices. If q is not too big (relative to n), we can do better. 

Theorem 9. Any n X n constant line-sum matrix over Z/qZ can be written as a 
Z/qZ-linear combination of no more than ( q  - l)n permutation matrices. 

We note that (q - l)n is less than n2 - 2n + 2, provided q 5 n - 1. We 
illustrate Theorem 9 with an example before embarking on the proof. Working 
over 2 /32 ,  consider 

/ 2  2 2 2 \  

A = 
1 
1 

1 
0 

1 
0 

2 
1 '  (2) 

,1  2 2 0 ,  
We can construct a semi-magic square A' that is congruent to A (modulo 31, with 
magic constant 8 = (q - 1)n: 

Trivially, A' can be written as a sum of 8 permutation matrices; this serves to 
express A as a Z/3Z-linear combination of 8 permutation matrices. 
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Proof of Theorem 9: Let A be an n X n constant line-sum matrix over Z/qZ. We 
may view the entries of A as integers a j j  satisfying 0 Iai j  4 q - 1. Working now 
in Z, let the maximal line sum in A be m; note that m I(q - 1)n. We now 
construct a semi-magic square A', congruent, entrywise, to A (modulo q), with 
magic constant m. Choose any row of A whose entries do not add up to m (if 
there is no such row, A is already semi-magic), and any column of A whose entries 
do not add up to m. Where the chosen row and column intersect, add to the entry 
a large enough multiple of q to bring the larger of the row and column sums up to 
m. This does not change the congruence class of the entry (modulo q), and 
it decreases by at least one the number of lines with line-sum not equal to m. 
After at most 2n - 2 applications of this procedure we arrive at a semi-magic 
square, A'. 

Now A' is a semi-magic square with magic constant m, so it can certainly be 
written as a sum of m permutation matrices. As corresponding entries in A' and 
A are congruent (modulo q), the same m permutation matrices sum to A when 
viewed over Z/qZ. Since m I (q - l )n ,  we are done. rn 

In the case q = 2, Theorem 9 is best possible, since it is clear that the n X n 
all-ones matrix requires n permutation matrices. In other cases, we can often do 
better; if q is not a prime, we can always do better. It helps to introduce some 
notation here. Let P(A,  q) denote the least r such that A can be written as a 
Z/qZ-linear combination of r permutation matrices, and let ~ ( n ,  q )  denote the 
maximum value of P(A,  q)  over all n x n constant line-sum matrices A. In this 
notation, Theorem 9 says P(n,  q )  5 (q - 1)n. 

Theorem 10. Let s and t be integers, and let A be an n X n constant line-sum matrix 
over Z/stZ. Then P(A,  st) 4 p(A,  s)  + P(n, t). 

Prooj5 Let p (A ,  s)  = k, so A = C f c j q  + sA, for some integers c , ,  . . . ,ck ,  some 
permutation matrices P,, . . .,P,, and some constant line-sum matrix A,. Then 
we see that A,  = C:djQj + tA, for some integers d,, . . . ,d,, some permuta-
tion matrices Q,, . . . , Q,, and some constant line-sum matrix A,, with 
1 I p(n,  t). Then 

k 1 

A - C c j <  + (mod s t ) ,  CS~,Q, 
and k + 1 I P(A, s)  + P(n, t). rn 

Corollary 11. Let the factorization of q into powers of distinct primes be q = 

p;' p,!~Then+ * '  

I' I' 

P ( n ,  q )  I C a j  P ( n ,  I C a j ( ~ j- 1)'. (3) 
1 1 

If q is not a prime then (3) is always an improvement over the bound in 
Theorem 9. We can often make a small improvement on the bound (3), even for 
prime q. Rather than state the result in its full (and somewhat tedious) generality, 
we illustrate its application to 4 x 4 matrices over 2 / 3 2  by establishing that 
P(4,3) I 7; Theorem 9 allows us to conclude only that P(4,3) I 8. Let A be any 
4 x 4 constant line-sum matrix over 2 / 3 2  that, when viewed as an integer matrix, 
has maximal line-sum 8; for example, the matrix (2). Then 2A has all line-sums 
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congruent to 1 (mod 3), thus, maximal line-sum at most 7 (when viewed as an 
integer matrix). In our example, 

By the procedure of the proof of Theorem 9, 2A can be expressed, over 2 /32 ,  as 
a sum of 7 permutation matrices. Multiplication by 2 yields an expression for A as 
a Z/3Z-linear combination of 7 permutation matrices, whence P(4,3) I 7. 

With a bit more work, we can actually prove P(4,3) = 6. For it follows from the 
work of Marcus and Minc [4] that if B is a 4 X 4 semi-magic square with magic 
constant 7, then there is a permutation matrix P such that B - 2 P  has non-nega-
tive entries. Since B - 2 P  is a semi-magic square with magic constant 5 ,  B is a 
positive integer linear combination of 6 or fewer permutation matrices. Thus, the 
number of permutation matrices necessary to represent a 4 x 4 constant line-sum 
matrix over 2 / 3 2  is at most 6, which is best possible: 

cannot be written as a Z/3Z-linear combination of fewer than 6 permutation 
matrices (exercise for the reader). The general question of evaluating P(n, q )  
appears to be very intricate. 

10. APPENDIX. We present a result about vector spaces that is somewhat techni-
cal, together with two useful corollaries. We would like to thank Bruce Reznick for 
suggestions that improved the exposition in the proof of this lemma. 

Lemma 12. Let V be a vector space over a field F .  Let v,, . . . ,v, and z be in V ,  and 
let W , ,  . . . ,w/;,be subspaces of V.  Assume that no @ contains the subspace Vo 
generated by {v , ,  . . . ,v,}. Let S cF be any set with m + 1 or more elements. Then 
there is a vector u in V t h a t  can be written as v = a,vl + ... +a,u, + z with each ai in 
S ,  but u is not in W l  U ... U W,,. 

Corollary 13. No vector space V over an infinite field F is a finite union of proper 
subspaces. 

Proof: Let W , ,  . . . ,U/;, be proper subspaces of V. Choose v, in V such that v, is 
not in U: for 1 4 i I m .  Now apply Lemma 12, with S = F and z = 0. 

Corollary 14. For evely n there is an n X n constant line-sum matrix with non-nega-
tive rational entries that is not a rational linear combination of n 2  - 2 n  + 1 permuta-
tion matrices. 

Proot In Lemma 12, let F be the rationals, and let S be the non-negative 
rationals. Take d = n 2  - 2n + 2, and let v,, . . . ,v, be a linearly independent set 
of permutation matrices. Let V be the span of {v , ,  . . . ,v,}, which is the space of all 
n X n constant line-sum matrices with rational entries. Let W l ,. . .,w,,be the 
subspaces generated by sets of n 2  - 2 n  + 1 permutation matrices-one subspace 
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for each set of permutation matrices. Lemma 12 ensures that there exist a,, . . . ,a,, 
all non-negative rationals, such that u = a,u, + ... +a,v, is not in any w.This u 
is a constant line-sum matrix with non-negative rational entries, and is not a 
rational linear combination of n2 - 2n + 1 permutation matrices. rn 

Proof of Lemma 12. We may assume that u,, . . . ,v, are linearly independent, for, 
if u,, . . . ,u,. are linearly independent, and u,.+,, . . . ,u, are dependent on u,, . . . ,u,., 
we may choose a,.+,,. . . ,a, arbitrarily from S ,  let z' = a,.+,u,.+,+ ... +a,v, + z ,  
and find a vector u that can be written as u = a,v, + ... +al.ul.+ z'. 

For each j ,  let Xj  = 4n Vo.Then X I , .. . ,X,, are proper subspaces of V,. 
We may assume that S has exactly m + 1 elements, and let T = {C:', ,aiui + z : 
a, E S } ,  SO T has cardinality ( m  + 1)". We wish to conclude that T is not 
contained in X I  u ... u XI,,. 

In fact, we prove that # ( X j  n T )  I ( m  + 1)"-', from which it follows that 

For, suppose # ( X I  n T )  > ( m  + I)"-' .  Then for each k, 1 Ik 4 d, the pigeon- 
hole principle implies that there exist c,,  . . . ,c k - , ,c,+,, . . . , C ,  in S such that 
c,u, + ... +buk + ... +c,u, + z is in X ,  for two distinct elements b of S ,  say, 
b = b ,  and b = b,. Then ( b ,  - bl)vk is in X, ,  hence v, is in X,. But this is true 
for each k, contradicting the hypothesis that X ,  is a proper subspace of V,. The 
same argument applies to each X,. rn 
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