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The Isoperimetric Problem on Surfaces 

Hugh Howards, Michael Hutchings, and Frank Morgan 

1. INTRODUCTION. The isoperimetric problem on a surface is to enclose a given 
area with the shortest possible curve. The classical isoperimetric theorem asserts 
that in the plane the unique solution is a circle. On curved surfaces the isoperimet- 
ric problem is harder and much remains open. Even on the simplest paraboloid the 
"obvious" solution was proved only in 1996 by Benjamini and Cao ([2, Thms. 5,8]; 
see also [24, Prop. 71, [22, Thm. 3.11, [30, Thm. 11, [29], [26]): 

Theorem 1.1(Benjamini and Cao). The zlniqzle least-perimeter way to enclose given 
area in the paraboloid of revolzltion 

P = { z  = x 2  + y 2 }  c R~ ( l . l )  
is a horizontal circle { z  = c}.  

This article gives our three favorite proofs of the classical isoperimetric theorem 
in the plane and then presents some recent results on other surfaces, including a 
new proof for the paraboloid. Section 2 uses an amazingly simple symmetry 
argument to show that a nice minimizer must be a circle. Unfortunately this 
approach needs to assume that a nice minimizer exists. Section 3 gives a very 
simple, complete proof without assuming a nice minimizer exists, following the 
undergraduate thesis of Howards [IS]. Section 4 provides another complete proof, 
a slight twist on a magical proof of Gromov [lo]. 

In general surfaces the existence of a nice, one-component perimeter-minimiz- 
ing curve has been astonishingly problematic. Fortunately a relatively easy ap- 
proach is now available from [12], as explained in Section 5. One has to allow the 
curve to bump up against itself. 

Sections 6-8 solve the isoperimetric problem for cylinders, cones, flat tori, and 
Klein bottles. Section 9 treats the paraboloid and certain other surfaces of 
revolution. Section 10 discusses hyperbolic surfaces. 

This work was partly inspired by a more difficult question we heard from 
J. C. C. Nitsche about the soap film between a large wire boundary and a small, 
moveable loop of thread. The thread wants to position itself to minimize the area 
of the soap film outside it. If the thread were constrained to lie in a fixed surface 
bounded by the wire (which unfortunately is not the case), then the thread would 
want to be an isoperimetric curve in that surface. 

Osserman [23] provides a marvelous survey on the isoperimetric inequality. 

2. THE CIRCLE IN THE PLANE, ASSUMING SMOOTH EXISTENCE. We 
assume that there is a compact minimizer C among smooth curves of finitely many 
components and enclosed area .rr, and use symmetry to prove it must be a single 
round unit circle; existence is a nontrivial assumption, a fact overlooked by some 
early workers. The proof uses a symmetry argument we heard from Brian White 
and Luen-fai Tam, who thought it originated with Blaschke (see [9, Thm. 3.41, 
[17, Thm. 5.31, and [16, $21); we have been unable to trace its origin and would be 
grateful to anyone who could help. 

430 THE ISOPERIMETRIC PROBLEM ON SURFACES [May 



Suppose C is not a round circle. Take a horizontal line splitting the enclosed 
area in half. Each half must have the same length, or the shorter half, together 
with its reflection, would be shorter than C. Replacing C by half plus its reflection 
if necessary, we may assume that C is symmetric across the horizontal line. 
Similarly we may assume that C is symmetric across a vertical line. We may 
assume the lines meet at the origin. Now C is symmetric under the composition of 
the two reflections, i.e., under 180-degree rotation around the origin. Hence every 
line through the origin splits the area in half. C must meet every line through the 
origin orthogonally; otherwise, one half of C, together with its reflection, would 
not be convex, and its convex hull would have less perimeter and more area. It 
follows that C consists of circles about the origin. A single circle is best. We 
conclude that the original C is a round circle. 

This argument can be generalized to prove that a round hypersphere is 
perimeter-minimizing for given volume in R", in the round sphere S", and in 
hyperbolic space Hn.  More generally, it shows that a minimizing cluster of k 
bubbles enclosing 12 < n prescribed volumes in Rn has O(n - k + 1) symmetry, 
assuming known but difficult existence and regularity [16, Thm. 2.61. It played an 
essential role in the recent proof by Hass, Hutchings, and Schlafly of the equal 
volumes case of the still open Double Bubble Conjecture, which says that the 
familiar standard double soap bubble is the least-area way to enclose and separate 
two given volumes of air ([Ill, [16], [14], [IS], [13]). 

3. THE CIRCLE IN THE PLANE, WITHOUT ASSUMING EXISTENCE. To 
prove that the circle is perimeter-minimizing (but not necessarily uniqueness), by 
approximation it suffices to show that the shortest n-gon enclosing given area is 
the regular n-gon. In his undergraduate thesis, Howards [15] gave the following 
geometric proof free of variational calculus, including ideas that we have since 
traced back to Zenodorus about 200 BC, Steiner in 1838 ([27], [28, p. 105 and Fig. 
61), and Courant and Hilbert [6, p. 1661; see the interesting "A history of the 
classical isoperimetric problem" by Porter [25] and Bonnesen and Fenchel [5, $571. 

By compactness, there is a shortest n-gon in the 2n-dimensional space of 
vertices. It is convex. Consider two adjacent sides, which determine a triangle, and 
the line L through the common vertex and parallel to the third side of the triangle. 
These two sides must constitute the shortest path to L and back, since all such 
constructions yield triangles of the same area. The first side, together with the 
reflection of the second across L, must form a straight line. Hence the two sides 
have the same length. Therefore the n-gon is equilateral. 

To prove that the equilateral n-gon is regular, we begin with n even. For 
opposite vertices P, Q, the line PQ must have the same area above as below, or a 
reflection of the larger half would enclose more area (or, scaled down, the same 
area with less length). For an intermediate vertex M,  the angle PMQ must be 90°, 
or replacing it with a 90" angle and reflecting as in Figure 3.1 would increase the 
area enclosed. Therefore the n-gon is inscribed in a circle and must be regular. 

Finally suppose n is odd. A regular 2n-gon comes from putting little triangles 
on the sides of the regular n-gon. If a perimeter-minimizing n-gon, known to be 
equilateral, had more area than a regular n-gon with the same sides, putting those 
little triangles on its sides would yield a non-regular 2n-gon with more area than 
the regular 2n-gon, the final contradiction. 

This completes the proof that the circle is perimeter minimizing. In fact, now 
that we know that a minimizer exists, we can use the above arguments to prove 
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Figure 3.1. The angle PMQ must be 90", or replacing it with a 90" angle and reflecting would increase 
the area enclosed. 

uniqueness. Consider any minimizer. It must be convex. As above, a line bisecting 
its perimeter must bisect the area, and any inscribed angle must be 90". Therefore, 
the minimizer must be a circle. 

4. THE CIRCLE IN THE PLANE, ANOTHER PROOF WITHOUT ASSUMING 
EXISTENCE. Gromov ([lo]; see [3, 12.11.41 or [20, 10.51) gave a proof of the 
isoperimetric theorem in Rn by direct comparison. The strategy in R ~ ,for example, 
is to find a vectorfield v on any competing region R of area .ir with smooth 
boundary C and outward unit normal n such that 

with equality everywhere only if R is a disc. If such a v can be found, then the 
isoperimetric inequality follows immediately from Stokes' theorem: 

with equality only if R is a disc. 
The Gromov proof finds such a v by a very clever construction, but the resulting 

v is not canonical. We now show that there is a canonical such v when n = 2. 
The canonical u is the negative of the gravitationalfield induced by a substance 

of constant density filling the region R. More precisely, 

By the two-dimensional analog of Gauss's law, div(v) = 2 in R, so it now suffices 
to prove (4.2). 

Fix a point x in the boundary, and choose polar coordinates (r,  0)  around x so 
that n points in the direction 0 = .ir. Then 

1 cos 0 
v ( x ) . n = - /  -dy. 

.ir y € R  r 

/ 
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Since the area of R is fixed, this integral is maximized if we put the points of R 
where (cos O)/r is largest. The level sets of (cos O)/r are circles tangent to C at x, 
with smaller circles giving larger values of (cos 8)/r. So clearly a disc of the given 
area uniquely maximizes the integral, completing the proof. 

5. PROOF OF EXISTENCE OF NICE LEAST-PERIMETER ENCLOSURES. In 
the Euclidean plane and in other special cases where all candidates can be 
convexified, the existence of a (convex) region of least perimeter and prescribed 
area follows from Blaschke's selection theorem ([4, p. 381, [8, Chapt. 41). A general 
smooth Riemannian surface S requires a more general argument. There must 
be some hypothesis to prevent the solution from disappearing to infinity as in 
Figure 5.1. Suppose for now that S is a compact surface, perhaps with convex 
boundary. 

Figure 5.1. In the surface of revolution generated by y = l /x,  for any given area, there is a sequence of 
annuli disappearing to infinity with perimeters going to 0. 

For the moment we restrict to images of the unit circle parametrized by 
arclength. Later we consider curves of several components. Then compactness 
properties of Lipschitz functions (Ascoli-Arzela Theorem) immediately produce a 
minimizer. The only problem is that in theory the limit might bump up against 
itself too wildly to permit the standard variational argument that it has constant 
geodesic curvature. The solution may actually bump up against itself, as in the 
cylinder of Figure 5.2. This technical difficulty delayed for 75 years the completion 
of Poincare's proof that every smooth convex sphere contains a simple closed 
geodesic. In 1982 C. Croke [7] gave a complete proof by minimizing a combination 
of length and energy in a class of piecewise geodesic curves. 

Figure 5.2. Some least perimeter enclosures on  the cylinder 
bump up against themselves. 

More recently, Hass and Morgan ([12]; see also [22, Lemma 2.21) have provided 
a very simple approach to more general existence and regularity using local 
convexification. Away from the boundary of S, a minimizing enclosure is an 
embedded curve of constant geodesic curvature K , ,  except possibly for finitely 
many geodesic arcs or isolated points where it bumps up against itself but remains 
C1. Even at the boundary of S the curve remains C1 and the geodesic curvature 
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satisfies K I K~ (weakly). If for bounded area the curve is allowed a large number 
of components enclosing disjoint regions, no curve bumps itself on the inside and 
K I K~ everywhere. If the curve is allowed several nested components enclosing 
multiply connected regions, it never bumps itself. A word on the proof: if local 
convexification causes two pieces of curve to cross, the longer one is rerouted 
along the shorter. This process reduces length unless the curves were convex to 
begin with. Given convexity, standard variational arguments prove the rest. 

In many noncompact manifolds, such as the Euclidean or hyperbolic plane, one 
can work inside a large convex set. Hyperbolic surfaces and other surfaces can 
have thin cusps to infinity with nonconvex truncations, but as long as the area of 
the cusp is finite, any sequence of curves going off to infinity has area going to 0 
and may be discarded. 

Existence and some regularity hold as well for clusters in R2 (enclosing and 
separating several regions of prescribed areas [21]) and in general dimensions by 
the techniques of geometric measure theory [19, Chapt. 131. In higher dimensions 
you cannot hope to prescribe the topological type; for example, regions connected 
by thin tubes can disconnect in the limit. Even for curves in the plane, such general 
techniques do not have the topological control we need. 

6. CIRCULAR CYLINDERS. On the cylinder { x 2+ y2  = a2}c R3, the least-
perimeter enclosure of area A is a small (round) circle for A < 4 r a 2  and two 
horizontal circles for A 2 4.rra2. 

Proofi We know that any solution consists of closed curves of constant curvature. 
If one curve is homotopically trivial and hence is a small round circle, it is the only 
one, or it could be translated to touch another and contradict regularity. If all the 
curves are homotopically nontrivial, there must be at least two of them to enclose 
area, and two horizontal circles are best. The transition occurs when the circumfer- 
ence of the small circle 2 m equals the length of two horizontal circles 4.rra, i.e., 
A = 4.rra2. 

7. FLAT TORI AND KLEIN BOTTLES (Howards [15, Thm. 3.11). Let S be a flat 
tonis or Klein bottle with shortest closed geodesic of length a. Given 0 < A < area S ,  
the least-perimeter region of area A is 

(1) 	a circular disc if 0 < A  I a 2 / r ;  
(2 )  a 	band (possibly Mobius) with geodesic boundary if a2/.rr I A I area S -

a2/.rr; 
(3) 	the complement of a circular disc if area S - a 2 / r  A area S .  

Proog Any solution consists of closed curves of constant curvature. As in the 
argument in Section 6, if one is homotopically trivial and therefore a small round 
circle, it is the only one or it could be translated to touch another and contradict 
regularity. If all the components are nontrivial, for any given area the perimeter is 
uniquely minimized by a single geodesic band with perimeter 2a. The transitions 
between types occur when the circle has circumference 2a. 

Remark. The round sphere and round projective plane may be treated by similar 
arguments [15, Thms. 4.1, 5.11 or by the methods of Section 9 [22, Thms. 3.1, 3.31. 

8. CIRCULAR CONES. On the circular cone { z  = ad=} c R3, the least- 
perimeter encloszire of area A is a horizontal circle. 
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Figure 8.1. A constant-curvature curve about the vertex of the cone must be a circle of 
smaller circumference than a planar circle of the same area. 

Proof: If any component does not encircle the vertex, it must be the only compo- 
nent (or it could be translated to touch another component, contradicting regular- 
ity), and hence it must be a circle of length 2 a .  Consider a constant-curvature 
curve that encircles the vertex. It must be symmetric about the line through the 
vertex and a point most distant from the vertex, as in Figure 8.1, so it must be a 
horizontal circle. Clearly a single horizontal circle would have less perimeter than 
several. Since one horizontal circle has length less than 2 m ,  it must be the 
minimizer. 

Remark. Actually for a simply-connected domain D on a surface with Gauss 
curvature K, the perimeter L satisfies 

L~ 2 ~ T A- 2 Agmax{ K 0 , 

with equality for the singular limit case of the cone [23, Thm. 4.31. 

9. THE PARABOLOID AND OTHER SURFACES OF REVOLUTION. Sections 9 
and 10 provide some new examples. The following theorem and corollary include 
the paraboloid. The proof integrates the Gauss-Bonnet theorem. 

Theorem 9.1 ([24, Prop. 71, [22, Thm. 2.11, [29]). Consider the plane with smooth, 
rotationally symmetric, complete metric szich that the Gauss curvature is a strictly 
decreasing finction of the distance fiom the origin. Then the ziniqzie length-minimizing 
simple closed curve enclosing a given area is a circle centered at the origin. 

By Section 5, inside a surface of finite area or inside a large convex ball B, for 
bounded area, there is a minimizer among C1 curves of m Im ,  components, 
enclosing m disjoint discs. Away from dB, it is an embedded curve of constant 
geodesic curvature K,, except possibly for finitely many geodesic arcs or isolated 
points where it bumps up against itself. If m ,  is large, the curvature K IK ,  

everywhere. 
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A short proof of the following standard technical lemma is in [20, 39.7, p. 1121 
(cf. [22, Lemma 2.31). The idea is that the rate of change of the perimeter 
is essentially the geodesic curvature, which is controlled by the Gauss-Bonnet 
theorem. 

Lemma 9.2. Let L ( A )  denote the least perimeter of m I m ,  discs of total area A. 
Then L ( A )  is differentiable almost everywhere and 

Proof of Theorem 9.1 [22]: In the surface or inside a large convex ball, for m ,  large, 
let L ( A )  denote the length of a shortest curve of m Im ,  components enclosing 
m disjoint discs of total area A. First we claim that if L is differentiable at A ,  
then L r ( A )is the geodesic curvature K,. One geometric interpretation of geodesic 
curvature is the rate of change of length with respect to area under perturbations 
of the given minimizer [20, Chapt. 21. Hence for A A > 0, the new minimizers must 
do at least as well as perturbations of the old one, and L r ( A )I K,. Similarly for 
A A < 0, -L r ( A )I- K,. Therefore L r ( A )= K,. 

Now Gauss-Bonnet tells us that the total Gauss curvature of the enclosed region 
equals 

Let G ( A )  denote the total Gauss curvature of a disc of area A centered at the 
origin. Since the Gauss curvature is a decreasing function of radius, any other 
region with the same area must have less total Gauss curvature. So we have 

297- - L ( A )  L r ( A )  5 G ( A ) ,  (9 .1)  
and 

L (  A )L r (A )  2 2 ~ r- G (  A ) .  

By Lemma 9.2, integration from A = 0 to A, yields 

This inequality is sharp for a circle centered at the origin, as we can see by 
integrating the Gauss-Bonnet formula for circles centered at the origin with area 
A from 0 to A,. Hence equality holds in (9.2), L is differentiable everywhere, and 
equality holds in (9.1). Therefore a minimizer encloses Gauss curvature G ( A )  and 
must be a circle about the origin. 

The following general extension to several, perhaps multiply connected regions 
is deduced in [22, Thm. 3.11. Here we give a proof for the easy case of positive 
Gauss curvature, which includes the paraboloid. 

Corollary 9.3. Among zinions of disjoint, perhaps multiply connected regions, a 
perimeter minimizer exists and is a (round) disc, disc complement, or annzilus about 
the origin. If the Gauss curvature is positive or the total Gauss curvature of every 
compact region is less than 2 ~ r ,then the minimizer is a disc. 

Proof for the case of positive Gauss curvature: By the Gauss-Bonnet theorem, the 
perimeter P ( r )  and geodesic curvature ~ ( r )of a circle about the origin of radius r 
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bounding a disc D satisfy 

The total Gauss curvature is at most 2 ~ r ,since otherwise eventually P' I-a < 0 
and P hits 0. By (9.3), K is positive and decreasing. Consider any collection of 
simple closed curves enclosing area A,. By discarding any curves inside others, 
enclose area A ,  2 A,. By Theorem 9.1, each curve alone would be shortest if a 
circle about the origin. Since K = dP/dA is decreasing, one single circle about the 
origin is best. Since A ,  I A, ,  the circle of area A ,  is best of all. 

10. HYPERBOLIC MANIFOLDS, We consider geometrically finite complete hy- 
perbolic surfaces (curvature - 1). Such surfaces may be compact or have finitely 
many ends: cusps (with exponentially shrinking thickness and finite area) or flared 
ends (asymptotic to the hyperbolic plane). 

Theorem 10.1 [I, Thm. 2.21. Let S be a hyperbolic suflace. For given area 0 <A < 
area(S), a perimeter-minimizing system of embedded rectifiable curves bounding a 
region of area A consists of curves of the same constant curvature of one of four types: 

(I) a circle, 
(11) horocycles around cusps, 

(111) 	 two "neighboring curves" at constant distance @om a geodesic, bounding an 
annulus or complement, 

(IV) 	geodesics or single neighboring curves. 

The total perimeter L satisfies 

with equality for a circle of area A .  If S has at least one cusp, then cases (I) and (111) 
do not occur and L I A ;  if moreoverA < T ,  then a minimizer consists of horocycles 
bounding neighborhoods of an arbitrary collection of cusps and has perimeter L = A .  

Proof sketch: The constant-curvature curves on a hyperbolic surface are circles 
bounding discs ( K  > 1) or the complement ( K  < - 11, horocycles around cusps 
( K= 1) or the complement ( K  = -I),  and constant-curvature curves around necks 
( I  K I  < 1, including the geodesics around the middle of necks with K = 0). 

A minimizer cannot have more than one circle, since sliding one until it hits 
another (or itself) would contradict regularity. Since for other types, dL /dA  = K is 
less than it is for a circle, (10.1) always holds, and there is an A ,  2 0 such that if 
A < A ,  the minimizer is a circle, while if A > A ,  it is not a circle and (for 
A A  > 0) 

Now a computation shows that an annulus (or complement) as in Case (111) must 
occur alone, or an operation such as discarding it would contradict (10.2). There- 
fore the minimizer falls into one of the four asserted cases. 

Henceforth assume S has a cusp. Case (I) cannot occur, because sliding the 
circle out the cusp until it hits itself would contradict regularity. Hence the 
minimizer always has I K I  I 1, and always L ( A )  I A .  A computation shows that 
Case (111) cannot occur. 
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Finally assume A < T. We claim there is no minimizer with -1 I K < 1 and 
length L I A, so -A + K L  < 0. Otherwise, applying Gauss-Bonnet to the en-
closed region yields 

~ T X= -A + K L  < 0, 

,y I -1, -A + K LI - 2 ~ ,K L  I -T,  K < 0, L 2 T > A ,  a contradiction. 

The remaining possibilities, systems of curves with K = 1, consist of horocycles 
bounding cusp neighborhoods. Since K = 1, as you slide a horocycle out a cusp 
dL/dA = 1,and therefore its length equals the area of the cusp neighborhood. By 
the claim, such systems remain minimizing as long as they exist, either for all 
A < T or until they bump up against themselves at some A, < T. If one bumps, 
by regularity the minimizer has perimeter less than A,, contradicting the claim and 
proving the theorem. 
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The infinitude of the primes 
Is the subject of plenty of rhymes, 

But we can't begin 
T o  prove there's a twin 

An infinite number of times. 

Contributed by Peter Rosenthal, University of Toronto 
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