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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

The Smallest Solution of 
4 ( 3 0 n  + 1) < 4 ( 3 0 n ) Is ... 

Greg Martin 

In a previous issue of this MONTHLY, D. J. Newman [I]showed that for any positive 
integers a, b, c, and d with ad  # bc, there exist infinitely many positive integers n 
for which $(an + b) < $(cn + d), where +(m) is the familiar Euler totient 
function, the number of positive integers less than and relatively prime to m. In 
particular, it must be the case that $(30n + 1) < +(30n) infinitely often; however, 
Newman mentions that there are no solutions of this inequality with n 5 
20,000,000, and he states that a solution "is not explicitly available and it may be 
beyond the reach of any possible computers." The purpose of this note is to 
describe a method for computing solutions to inequalities of this type that avoids 
the need to factor large numbers. In particular, we explicitly compute the smallest 
number n satisfying $(30n + 1) < $(30n). 

It is quite easy to compute values of n for which $(30n + 1) is relatively small 
by imposing many congruence conditions on n modulo primes, so that 30n + 1 is 
highly composite. However, the numbers n that arise in this way are quite large, 
having hundreds of digits. Computing $(30n) exactly relies on the factorization of 
30n, which for integers of this size is not possible to find in a reasonable amount of 
time with today's computers and factoring algorithms. The idea underlying our 
method is to use partial knowledge of the factorization of a large number m to get 
an estimate for $(m). 

Claim 1. Let pi denote the ith prime number. Let q = rI:'=+s+, pi for some positive 
integers r and s, and let m be an integer that is not divisible by any of the primes 
p , , .  . . ,pr.  Then: 

(a) if m I q, then m has at most s distinct prime factors; 
(b) if m has at most s distinct prime factors, then +(m)/m 2 +(q)/q. 

Proof: Let t be the number of distinct prime factors of m, and let the prime 
factors be pi,, . . . , p i ,  with i, < ... < i t .  Since none of the primes p,, . . . ,p,.divide 
m, it must be the case that i, 2 r + 1, i, 2 r + 2, and so on. If we define 
k = n:+l pj, we see that k 5 nj=,pi, m 5 q by assumption; and so ,=,.+, I m. But 
k 5 q, which can be the case only if t 5 s. This proves part (a) of the claim. 

For part (b), we use the fact that the function $(m)/m can be written as a 
product over primes dividing m: 



With k defined as above, notice that 

since 1 - l/p is an increasing function of p .  On the other hand, since t Is by 
assumption, we have 

since each 1 - l/p is less than 1. This proves part (b) of the claim. 

We now proceed to find the smallest solution of +(30n + 1) < +(30n); our 
method applies to any inequality of the form +(an + b) < +(cn + d). Clearly 
30n + 1 = 1 (mod 30) for all n. Also, if n is a solution of +(30n + 1) < +(30n), 
then 

since the inequality +(ab) I+(a)b holds for all a and b. Thus it makes sense to 
look for numbers that satisfy both these conditions. 

Claim 2. Let z = (p4p5 ... p3,,)p3,, p3,, . Then z is the smallest positive integer 
satisfiingz = 1(mod 30) and +(z)/z < 4/15. 

Proof: A computation shows that z is indeed congruent to 1 (mod 30) and that 

Suppose m is an integer satisfying m = 1 (mod 30) and +(m)/m < 4/15. Because 
of the congruence condition, m cannot be divisible by 2, 3, or 5. If we define 
q1 = rI:!:pi, then +(ql)/ql = 0.26671.. . , and so +(ql)/ql > +(m)/m. Thus if 
we apply part (b) of Claim 1 with r = 3 and s = 381, we conclude that m must 
have more than 381 distinct prime factors. 

Another computation reveals that the only numbers less than z that have at 
least 382 distinct prime factors are the numbers p4p5... p3,,rnr, where 
m' {~383~384~385, P383P385P386, P383P384P387, P383P385P3877P383P384P386, 
P384P385P386, P383 P384P388, ~ 3 8 3  ~ 3 8 7 1 ;and none of these numbers is 'Ongruent ~ 3 8 6  

to 1 (mod 30). 

Let us define n = (z  - 1)/30, which by Claim 2 is both an integer and the 
smallest possible solution of +(30n + 1) < +(30n). (Small wonder that we haven't 
stumbled across any solutions of this inequality-n has 1,116 digits!) It would be 
quite gracious of n to be an actual solution, and indeed it is. 

First we show that +(30n + 1)/(30n + 1) < +(30n)/30n. We have already 
computed 
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It turns out that n is divisible by both 60 and p4,,, = 47,279, so define n' = 

n/(60p4,,,,). We can compute that n' is not divisible by any of the first 80,000 
primes. This computation can be done quickly by multiplying the primes together 
in blocks of 1,000, say, and computing the greatest common divisor of n' and the 
product. Since computing greatest common divisors is a very fast operation, 
checking that n' is not divisible by any of the first 80,000 primes takes only a few 
minutes on a workstation-much more reasonable than trying to factor a number 
with over a thousand digits. 

Now define q, = rIp!i;t,, p,. We compute that q, has 1,118 digits and so 
q, > n > n'. By using parts (a) and (b) of Claim 1with r = 80,000 and s = 186, we 
see that +(n1)/n' 2 +(q,)/q,. Therefore, since +(ab) = +(a)+(b) when a and b 
are relatively prime, we compute 

This shows that +(30n + 1)/(30n + 1) < +(30n)/30n, which doesn't quite 
imply that +(30n + 1) < +(30n)-only that +(30n + 1) < +(30n)(l + 1/(30n)). 
However, the numbers computed in (1) and (2) differ in the sixth decimal place, 
while multiplying by 1 + 1/(30n) leaves a number unchanged until past the 
1,100th decimal place. 

Therefore the following theorem has been established. 

Theorem. The smallest solution of +(30n + 1) < +(30n) is 
n = 232, 909, 810, 175, 496, 793, 814, 049, 684, 205, 233, 780, 004, 859, 885, 966, 051, 235, 363, 345, 311, 075, 

888, 344, 528, 723, 154, 527, 984, 260, 176, 895, 854, 182, 634, 802, 907, 109, 271, 610, 432, 287, 652, 976, 

907, 467, 574, 362, 400, 134, 090, 318, 355, 962, 121, 476, 785, 712, 891, 544, 538, 210, 966, 704, 036, 990, 

885, 292, 446, 155, 135, 679, 717, 565, 808, 063, 766, 383, 846, 220, 120, 606, 143, 826, 509, 433, 540, 250, 

085, 111, 624, 970, 464, 541, 380, 934, 486, 375, 688, 208, 918, 750, 640, 674, 629, 942, 465, 499, 369, 036, 

578, 640, 331, 759, 035, 979, 369, 302, 685, 371, 156, 272, 245, 466, 396, 227, 865, 621, 951, 101, 808, 240, 

692, 259, 960, 203, 091, 330, 589, 296, 656, 888, 011, 791, 011, 416, 062, 631, 565, 320, 593, 772, 287, 118, 

913, 728, 608, 997, 901, 791, 216, 356, 108, 665, 476, 306, 080, 740, 121, 528, 236, 888, 680, 120, 152, 479, 

138, 327, 451, 088, 404, 280, 929, 048, 314, 912, 122, 784, 879, 758, 304, 016, 832, 436, 751, 532, 255, 185, 

640, 249, 324, 065, 492, 491, 511, 072, 521, 585, 980, 547, 438, 748, 689, 307, 159, 363, 481, 233, 965, 802, 

331, 725, 033, 663, 862, 618, 957, 168, 974, 043, 547, 448, 879, 663, 217, 971, 081, 445, 619, 618, 789, 985, 

472, 074, 303, 100, 303, 636, 078, 827, 273, 695, 551, 162, 089, 725, 435, 110, 246, 701, 964, 021, 045, 849, 

081, 811, 604, 427, 331, 227, 553, 783, 590, 821, 510, 091, 607, 567, 178, 842, 569, 576, 699, 548, 038, 217, 

673, 171, 895, 383, 249, 326, 800, 667, 432, 993, 531, 186, 437, 659, 910, 632, 865, 419, 892, 370, 957, 722, 

154, 266, 351, 039, 808, 548, 150, 828, 868, 968, 820, 675, 198, 820, 381, 135, 523, 646, 361, 202, 383, 915, 

218, 571, 017, 801, 463, 011, 491, 108, 784, 343, 253, 284, 393, 511, 650, 254, 506, 597, 923, 969, 653, 616, 

813, 897, 710, 621, 756, 693, 827, 471, 154, 701, 151, 222, 320, 443, 347, 408, 180, 047, 964, 860. 
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