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Change of Variables in Multiple Integrals 

Peter D. Lax 

Dedicated to the memory of Professor Clyde Klipple, who taught me real variables 
by the R. L. Moore method at Texas A & M in 1944. 

1. Let y = p(x) be a differentiable mapping of the interval S = [c, dl. Denote by 
T the interval [a,  b] with cp(c) = a,  p(d) = b. Let f be a continuous function of y. 
The change of variable formula says that 

The usual proof uses the fundamental theorem of calculus. Denote by g an 
anti-derivative of f :  

According to the fundamental theorem of calculus, 

where a and b are the endpoints of the interval T. On the other hand, by the chain 
rule the derivative of the composite g 0 cp is given by 

Using (1.2) we see that the x derivative of g 0 cp is the integrand on the left in 
(1.1); therefore by the fundamental theorem of calculus, 

where c and d are the endpoints of the interval S. Since p(c) = a and cp(d) = b, 
the right sides of (1.3) and (1.4) are the same; this completes the proof of (1.1). 

The usual proof of the change of variable formula in several dimensions uses 
the approximation of integrals by finite sums; see for instance [7]. The purpose of 
this note is to show how to use the fundamental theorem of calculus to prove the 
change of variable formula for functions of any number of variables. Then, as a 
surprising byproduct, we obtain a proof of the Brouwer fixed point theorem. In the 
last section we compare our proof with other known analytic proofs of the fixed 
point theorem. 

I thank Daniel Velleman for suggesting a substantial simplification of the 
argument. 

2. In this section we study mappings p(x) = y of n-dimensional x space into 
n-dimensional y space. We impose two assumptions: 

i) cp is once differentiable. 
ii) cp is the identity outside some sphere, say the unit sphere: 

p ( x )  = x for 1x1 2 1.  
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Change of variable theorem:. Let f be a continuous function of compact support. 
Then 

where J is the Jacobian determinant of the mapping p: 

dpj
J ( x )  = det- ;

dxi 

here pi is the j'" component of cp. 

We prove this for functions f that are once differentiable and for mappings cp 
that are twice differentiable; since functions and mappings can be approximated by 
differentiable ones, this suffices. The approximation can be accomplished by 
mollification, that is, by convolving each component of p with a smooth, nonnega- 
tive, spherically symmetric function m with small support whose integral equals 1. 
As the support of m shrinks to zero, m * cp and its first derivatives tend to those of 
p. If cp is the identity, so is m * cp. 

Define 

Clearly, 5 = f .  Since f is once differentiable, so is g. Since f has compact 
d ~ l  

support, 4;can choose c so large that f is zero outside the c-cube 

\ y i \ < c ,  i = l , 2  ,..., n. 

It follows from (2.3) that g (y l , .  . . ,y,) = 0 when ly,l r c for any j # 1,and when 
y1 I -C. 

Take c 2 1; then the c-cube contains the unit ball. Since p is the identity 
outside the unit ball, f(cp(x)) is zero outside the c-cube in x-space. So in the 
integrals in (2.1) we may restrict integration to the c-cube. 

In the left side of (2.1), express f as the partial derivative of g: 

We denote by D the gradient with respect to x;  the columns of the Jacobian 
matrix dp/dx are Dcp,, . . . , Dp,. 

Observation:. The integrand in (2.4) can be written as the following determinant: 

det(Dg( cp), Dcp2, . . . , Dcp,,). (2.5) 

Prooj5 By the chain rule 
n 

= C ( d y , g ) ~ q j .  (2.6) 
j = l  

We set this into the first column in (2.5). Formula (2.6) expresses Dg(cp) as a linear 
combination of the vectors Dp,,  Dq2,  . . . ,Dcp,,; the last n - 1of these vectors are 
the last n - 1columns of the matrix in (2.5), and therefore these can be subtracted 
from Dg(cp) without altering the value of the determinant (2.5). This leaves us with 
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det((dylg(cp))Dcpl, Dq,, . . . , Dq,); factoring out the scalar (dyl)g(cp) gives 
(dyl)g(cp)J, the integrand in (2.4). ¤ 

The next step is to expand the determinant (2.5) according to the first column; 
we obtain 

M1dxlg( cp) + ... +M,dx,,g( cp), (2.7) 

where M,, . . .,M, are the cofactors of the first column of the Jacobian matrix. 
Setting (2.7) into the integrand in (2.4) we get 

Since cp is twice differentiable, we can integrate each term by parts over the 
c-cube and obtain 

- /g( cp) ( d x 1 ~ ,  + ... + d,M,)  dx + boundan terms. (2.9) 

We use now the following classical identity: 

dxlMI+ ... + dX,)M,= 0. 

We sketch a proof: We can write the left side of (2.10) symbolically as 

det(D,  Dcp,,. . . , Dcp?,). (2.11) 

For n = 2 we have 

det(D,  Dp,) = dld2cp, - d2 dl cp, = 0. 

For n > 2 we note that the cofactors Mj are multilinear functions of the cpj. Using 
the product rule of differentiation, we write (2.11), again symbolically, as 

where the subscript k means that the differential operator D in the first column 
acts only on the kth column. We leave it to the reader to verify that each of the 
determinants in the sum (2.12) is zero. 

The identity (2.10) shows that the n-fold integral in (2.9) is zero. 
We turn now to the boundary term in (2.9). Since g(cp(x)) = g(x) on the 

boundary of the c-cube, the only nonzero boundary term is from the side x, = c; 
since Ml = 1when cp(x) = x, that boundary term is 

Using the definition (2.3) of g in (2.13) gives 

which is the right side of equation (2.1). This completes the proof of the change of 
variables formula. 

3. In our proof of the change of variables formula, we assumed neither that cp is 
one-to-one, nor that it is onto. We claim: 

A mapping cp havingproperties i) and ii) of the change of variables theorem maps 
Rn onto Rn. 
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Suppose some point yo were not the image of any x. Since cp is the identity 
outside the unit ball, yo would lie inside the unit ball. Since cp maps 1x1 I 1into a 
closed set, it would follow that some ball B, centered at yo would be free of 
images of cp. Now take any function f supported in the ball B,, whose integral is 
nonzero: 

By the change of variable formula 

Since the range of cp avoids B,, and since the support of f lies in B,, the 
integrand on the left in (3.2) is identically zero; then so is the integral. This 
contradicts (3.1), and so the claim is established. 

Intermediate Value Theorem:. Let cp be a continuous map of the unit ball in R" into 
[W" that is the identity on the boundary: 

cp(x) = x  for 1x1 = 1. 

Then the image of cp covers every point in the unit ball. 

Proof: Extend cp to be the identity outside the unit ball. Then approximate the 
extended map by differentiable maps, each the identity outside the unit ball. 
According to our claim, each of these maps covers the unit ball. By compactness, 
so does their limit. 

The following well-known argument shows how to deduce the Brouwer fixed 
point theorem from the intermediate value theorem. 

Let q5 be a continuous mapping of the unit ball into the unit ball; we claim that 
it leaves a point fixed. If not then for every x there is a ray from +(x) through x. 
This ray pierces the unit ball at a point that we denote by cp(x). Clearly, cp is a 
continuous mapping; it is the identity for x on the unit sphere and maps the unit 
ball into the unit sphere. This contradicts the intermediate value theorem. 

4. The Brouwer fixed point theorem has many analytical proofs. How do they 
compare with the present one? Hadamard [3] employed the identity (2.10) about 
the Jacobian matrix; so did Dunford-Schwartz [2, pp. 467-4701. 

Samelson [6] used Stokes' theorem to give an extremely short proof of the 
Brouwer fixed point theorem. This proof was rediscovered by Kannai [S]. Accord-
ing to Laurent Schwartz, as related by Haim Brkzis, such a proof was current in 
Paris in the thirties. 

BBez-Duarte [I] proved formula (2.1) using exterior forms and Stokes' theorem 
and deduced from it the intermediate value theorem. My deduction is the same as 
BBez-Duarte's. 

The integrafion of exterior forms over chains presupposes the change of 
variable formula for multiple integrals. It is amusing that the change of variables 
formula alone implies Brouwer's theorem. 

In conclusion we call attention to Erhardt Heinz's beautiful analytic treatment 
of the Brouwer degree of a mapping. 
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