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Hint: Remember the hexagon inscribed in the conic that we used in the construction 
of the elements of C(0) .  

6. Assume that triangle ABC has area S and that the radius of its circumscribed 
circle G is R .  We draw a circle K concentric with G and with radius r.  From a point P 
of K we draw its projections U,V,W o n  the sides of ABC.  Determine, as a function of 
S, R ,  and r ,  the area of the triangle UVW. 

Hint: The same as in Exercise 4. Answer: Area(UVW) = ( S / 4 ) ( 1  - r * / ~ ~ ) ,  
having selected the appropriate orientation so that the triangle UVW has positive area 
when r < R .  
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Another Short Proof of Ramanujan's 

Mod 5 Partition Congruence, and More 


Michael D. Hirschhorn 

We present another novel short proof of Ramanujan's partition congruence 

p ( 5 n  + 4 )  = 0 (mod 5 )  (1) 
in addition to that presented by John L. Drost [2], and indeed prove rather more. 

Ramanujan made the remarkable observation from a table of values of p ( n ) ,  
the number of partitions of n ,  that p(5n + 4) is divisible by 5. He observed and 
conjectured much more, and his conjectures turned out in the main to be correct. 
He gave a simple proof, based upon identities of Euler and Jacobi, of the 
conjecture (I), and his proof is essentially the one reproduced in Hardy and Wright 
[3] and referred to by Drost. Ramanujan's proof relies on manipulating power 
series, and considering coefficients modulo 5. It is my intention to give a proof of a 
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similar sort, more transparent than that of Ramanujan, using only the identity of 
Jacobi. And further, with a little extra work including the use of Jacobi's triple-
product identity, we prove remarkable congruences for the partition function due 
to Atkin and Swinnerton-Dyer. 

As is usual, write (q) ,  = n,,.,(l - qn) .Then 

We begin with Jacobi's identity [3, Theorem 3571, 

( q ) :  = C ( - 1)"(2n+ l ) q n ( n + 1 ) / 2 .  

n r O  

Each coefficient is congruent modulo 5 to 0, _f 1 or k2. Specifically, the coeffi-
cient is congruent to 1 when n - 0 or 9 (mod lo) ,  - 1 when n = 4 or 5 (mod lo), 
+ 2  when n = 1 or 8 (mod lo), -2  when n = 3 or 6 (mod lo), and 0 when n = 2 
or 7 (mod 10). Thus we find that, modulo 5 ,  
(q)i= C q10n(10n+1) /2  - C q(10n+4)(10n+5) /2  - C q ( 1 0 n + 5 ) ( 1 0 n + 6 ) / 2  

n r O  n r O n z O  

+ C q(10n+9)(10n+ 1 0 ) / 2  + 2 C q ( 1 0 n + 1 ) ( 1 0 n + 2 ) / 2  - 2 C 
4

( 1 0 n + 3 ) ( 1 0 n + 4 ) / 2  

n z O  n z O  n z O  

- 2 C q(10n+6)(10n+7) /2  + 2 C q(10n+8)(10n+9) /2  

n r O  n r O  

-- C q 5 0 n z + 5 n  C q50n2+45n+10 C q50n2+55n+15 C q50n2+95n+45.- - - + 

n r O  n z O  n z O  n z O  

+ 2 C q50nz+15n+1 - 2 C q50n2+35n+6 - 2 C q50n2+65n+21 

n z O  n z O  n z O  

+ 2 C q50nz+85n+36 

n r O  

Observe that in the first four sums the powers of q are congruent to 0 (mod 5 )  
while in the latter four sums the powers of q are congruent to 1 (mod 5). Thus we 
have 

( q ) :  = X + 2qY, 

where each of X, Y is a series in powers of q5. 
Also 

( 1  - q n ) 5  = ( 1  - 5qn + 1oqZn- 10q3" + 5q4n-.( q ) ;  = 
n r l  n r l  

Thus 



Comparing terms containing powers of q congruent to 4 modulo 5 on both sides, 
we see that 

p(5n  + 4)q5n+4= 0 (mod 5 ) .  rn 
n r O 

Notice that, at no extra cost, we obtain the congruences 

E p(5n  + 2)q5"+' = 2 q 2 X Y 2 / ( q 5 ) : ,  and 
nzO 

It is not hard to show that each of X , Y  is an infinite product. Indeed, as we 
shall see, 

x = n ( 1  - q25n-15)(1 - q25n-10)(1 - q25n) ,  
( 2 )

n z l  

Y =  n(l-q2 5 n - 2 0 ) ( ~  - q25n-5 ) ( I  - qZ5") .  ( 3 )
n r l  

It follows that 

C p ( 5 n  + 2 ) q n  = 2 n  
( 1  - q 5 " )  

and 
n r l  ( 1  - q 5 n - 3 ) ( 1- q 5 n - 2 )' nrO 

These remarkable results are due to Atkin and Swinnerton-Dyer [I, Theorem 11. 

We now show that X, Y are the infinite products claimed in (2) and (3).  
We have 

x = C q 5 ~ n 2 + 5 n- C q50n2+45n+10 - C q50n2+55n+15 + C q50n2+95n+45 

nzO nrO nzO nzO 

In the first sum, replace n by - n ,  in the third replace n by - n  - 1, and in the 
fourth replace n by n - 1. Then we find 
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The terms for n even in the final sum correspond to the first sum on the line 
above; the terms for n odd to the second sum. 

In the same way, we find 

To complete the proof, we now invoke Jacobi's triple product identity [3, Theorem 
3521, in the form 

m 

with q replaced by q25 and a replaced by q10 and q5, respectively. 
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