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Hopping Hoops Don't Hop 

James P. Butler 

The dynamical behavior of a massless hoop with an attached point mass under the 
influence of gravity is an old chestnut, with some surprising features, including the 
question of whether or not it can "hop". It appears in Littlewood's Miscellany [I] 
and most recently in this MONTHLY [2]. That there are many interesting aspects of 
this problem was suggested to me many years ago by the late Prof. J.C. Miller of 
Pomona College, who may have gotten a hint of the trickier parts directly from 
Littlewood himself. The purpose of this Note is to show that Littlewood's and 
Tokeida's asserted solution is wrong, even with a more realistic hoop and more 
realistic friction, and to suggest some approaches to a self consistent investigation 
of the rolling hoop. 

In its simplest form, the problem asks for the behavior of a rough massless hoop 
of radius R with a point mass M attached to its rim, rolling in a vertical plane on a 
level floor under gravity. Implicitly in Littlewood's problem, and explicitly in this 
Note, we understand the concept of massless to be the limit of a positive hoop 
mass tending to 0; otherwise the rotational behavior of the hoop in free fall is 
undefined. The idea of "rough" is central to the problem; it is (roughly) defined 
as a no-slip constraint at the point of contact of the hoop and the floor. Let 
6 E [O,.ir] be the angle from the radius vector to the mass, measured from vertical; 
other ranges of 6 are not considered in this Note. If the total energy is equal to 
the gravitational potential energy of the mass one diameter above the floor, the 
"solution" to the problem is the assertion by Littlewood that the hoop "lifts off 
the ground" or by Tokeida that the mass "pulls the hoop up" at 6 = ~ / 2 ;  this 
particular value of 6 depends on the total energy, but is especially simple in the 
case cited. Denote the normal force conferred by the floor on the hoop by n. The 
hopping conclusion is alleged to follow from the observation that, for zero kinetic 
energy at 6 = 0 and for the rim constrained to be in no-slip contact with the floor, 
n > 0 for 6 < ~ / 2and n < 0 for 6 > ~ / 2 .  The evaluation of 4 6 )  is elementary 
using Newton's second law and conservation of energy (the rough condition is 
conservative). An equivalent argument [2] is that the motion of the point mass 
either follows a cycloid for 0 I 6 I ~ / 2 ,or its free fall parabolic preference for 
~ / 25 6 ;  here the upper limit was not specified. 

This solution is wrong on both mathematical and physical grounds. To show 
this, we begin with the equations of motion, with the following notational conven- 
tions. Nondimensionalize the problem by measuring distance in units of radius R, 
mass in units of M, and time in units of m,where g is gravitational 
acceleration. In these units, gravitational acceleration is -1. The horizontal and 
vertical coordinates of the point mass are x = 6 + sin 6 and y = 1 + cos 6 ,  
respectively. The kinetic energy is given by (1/2)(i2 + j 2 ) = b2(1  + cos 61, where 
the overdot denotes the time derivative, and the potential energy by y = 1 + cos 6. 
With this notation, Newton's law takes the form 



If we take the total energy to be 2 (the potential energy at 6 = O), the conservation 
of energy yields 

&'(I + c o s 6 )  = 1 - c o s 6 .  

From these two equations, it is easily verified that n is positive for 6 < ~ / 2 ,zero 
for 6 = ~ / 2 ,and negative for I3 > ~ / 2 ;since the floor cannot exert a negative 
normal force on the hoop, one concludes (incorrectly) that the hoop hops past 
I3 = T/2. 

Theorem. Littlewood's hoop doesn't hop. 

Prooj? Let the coordinates of the hoop's center be x,, y,. For the hoop to hop, y, 
must be greater than one (radius) above the floor (as long as the hoop is in contact 
with the floor, y, = y - cos I3 = 1). The proof that this cannot happen is by 
contradiction. Assume that past 6 = a0= ~ / 2the hoop hops, implying that the 
mass falls freely, then solve for y,, and show that it cannot be greater than one. 
Let to be the time at which 6 = a0and n = 0. Assume that for to < t < t,, the 
hoop hops, meaning y, > 1. In this interval, the point mass is in free fall; the 
equations of motion are different from those with rough contact and a positive 
normal force. In particular, the vertical coordinate of the mass is given by 
y = yo + yO(t- to) - (1/2)(t - to)' and 6 is given by uniform angular rotation 
6 = a0+ &O(t- to), where the subscript 0 indicates the quantity evaluated at 
t = t i .  During the hop, therefore, 

At the beginning of the hop, y,(to) = 1, yc(to)= 0, and importantly, j;,(to) = -1. 
It follows that for the open time interval to < t < t,, I;, < 0. Over this interval 
therefore, the velocity of the center of the hoop is negative, i.e., it must anti-hop, 
or push through the floor. This is inconsistent with the assumption of a hop. 

What this theorem shows is that Littlewood's problem is singular in the sense 
that there is no solution past to consistent with Newton's laws, an impenetrable 
floor (y, 2 I), and no-slip (x, = 6 )  when n = 0. What then does the real hoop 
do? If we retain Newton's laws and an impenetrable floor, then the no-slip 
condition must be violated when n = 0, implying that the hoop skids. One must 
check that the skidding solution is self consistent; that this is true is sketched in the 
following arguments. 

There are several issues and questions raised by Littlewood's problem. First, 
with respect to the hopping conclusion, there is the explicit error in not using the 
different equations of motion for the different periods. Equivalently, the idea of 
simultaneously using a constraint such that y, = 1 together with n < 0 to argue 
that y, > 1 is clearly inconsistent. Second, the concept of "rough" contact is not 
well defined. As we have argued, we may retain a no-slip condition for two objects 
in contact with n > 0, but not for n = 0; in what follows we define no-slip 
conditions only for n > 0. Third, what then happens to such a real hoop during the 
skid phase? Can it subsequently hop? Fourth, if we impose realistic frictional 
conditions rather than rough ones, can such a hoop hop without skidding, or can it 
hop following a skid phase? 

It is not the purpose of this Note to give complete answers to these questions, 
but a few points can be made. The idea of a point mass and a massless hoop 
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suggests a second type of singular character to the equations of motion. This 
singularity manifests itself as a reduction of the number of equations of motion 
from three to two when the moment of inertia about the center of mass is zero, 
and as a concomitant reduction in the number of degrees of freedom for the 
frictional force from two to one (the vector friction force must point in the 
direction of the point mass). In approximating the behavior of real hoops, it is thus 
appropriate to consider distributing the mass on a real hoop so that its center of 
mass is at a radial distance A < 1 and its moment of inertia about that point is 
I > 0; we must investigate the hoop's behavior for A near 1 and for I near zero. 
With coordinates x, y generalized to the center of mass (x = x, + A sin 6 ,  y =y, 
+ A cos 6 )  and denoting the tangential frictional force of the floor 011the hoop by 

f ,  the equations of motion, valid irrespective of no-slip, skidding, or free-fall 
conditions, are 

x = f ,  

y = n - l  


1 6 = n ( x - x , )  -fy = n A s i n 6 - f ( l  + Acos6 ) .  

The no-slip condition remains x, = 6. It turns out that in this case as well, our 
Theorem remains true. The proof by contradiction is similar, and may be sketched 
as follows. When the hoop hops, we have n(to) = 0, y(to) = - 1, y,(t,) = -1+ 
A c0s(6~)&,2+ A ~ i n ( 6 ~ ) 6 ~= 0, and j,(t,t) = -1+ A c0s(6~)&,2. Eliminating 6 
from the equations of motion (written in terms of 6 )  easily shows that f < 0 and 
6 > 0 when n = 0. Comparison of y,(t,) with y,(t,f) then shows y,(t,f) < 0, 
which as before implies a contradictory anti-hop and therefore a skid. That the 
skid phase is well defined is shown by the existence of a finite f consistent with 
keeping the hoop on the floor. 

Having established that (at least for 6 E [O, n-1) an ideal hoop and its real 
cousin must skid if the normal force goes to zero, we now ask for a little more 
reality in the friction law. This might be Coulomb friction, with skidding occurring 
at some critical ratio of the tangential and normal force. One might even include a 
distinction between the ratio at which skidding begins (static friction), and the ratio 
during the skid (dynamic friction). In any case, the physics is no longer conserva- 
tive, and the absence of an energy integral means the equations are more difficult 
to analyze. Nevertheless, some general conclusions may still be drawn. (A) Is the 
skid forward ( 4  > i,: hoop is rotating faster than necessary for no-slip (an 
accelerating train with slipping wheels)), or backwards ( 4  < .kc: hoop is rotating 
slower than required for no-slip (a decelerating train with slipping wheels))? The 
answer is that both behaviors are possible. Starting from 6 near zero, the initial 
tangential force is clearly positive, and if the hoop is sufficiently greased, f/n can 
match the static friction; the hoop skids forward. If it's not, there is necessarily a 
backwards skid with f < 0. The sign of f at the beginning of the skid must 
therefore be considered. (B) While skidding, is a hop possible at some t,? There 
are several possibilities here. (Bl) Call a hop a "smooth take-off" if it occurs when 
n = 0. During the skid If/nl is fixed for Coulomb friction, and thus a smooth 
take-off requires f = 0 also. In this case (by analogy with the sketched proof), 
6(t; ) = 0, yc(t; ) =y,(t: ) = 0, but j;,(t: ) = -A sin(6, )4: < 0, again implying an 
anti-hop. (B2) Call a hop a "semi-smooth take-off" if it occurs when the skidding 
hoop catches up to the floor, and dynamic friction switches over to static friction. 
That this additional complication doesn't change matters is easily seen by the 
observation that a change in force to a different, but finite, value for an infinitesi- 
mal amount of time cannot change the subsequent dynamics. (B3) What remains is 
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the possibility of a "jump hop", associated with impulsive forces, approximated by 
delta functions in "stick-slip" dynamical problems such as chattering chalk on a 
blackboard. This phenomenon appears to be the most likely candidate for the 
origin of the real hop of real hoops, but raises more complicated questions about 
the physics, and makes the analysis commensurately more difficult. 

This analysis of the hopping hoop leads to several conclusions. First, and most 
important, is that Newton's laws and the kinematical constraint for "rough" contact 
are in general inconsistent when the normal force is zero. Second, real hoops that 
hop must skid first, and the subsequent hop cannot be smooth nor semi-smooth. 
Third, there is a rich structure in the behavior of real hoops: vary h and I,vary the 
initial conditions, let t9 be unbounded, follow the bounce(s) after the hop. Finally, 
with respect to this isolated singularity in Mr. Littlewood's Miscellany, he did say 
that in practice, "the hoop skids", but seemed to imply this to be due to a realistic 
friction law rather than a necessary consequence even with an unbounded coeffi- 
cient of static friction. The answer to his query whether the behavior of the hoop is 
intuitive is given by the following 

Theorem. The behavior of hopping hoops is not intuitive. 

Proof: By inspection. 
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Approximation of Hiilder Continuous 

Functions by Bernstein Polynomials 


Peter Math6 

In a recent MONTHLY[S], a special instance of the WeierstraB approximation 
theorem attracted attention: approximation of real Lipschitz functions on [O, 11by 
Bernstein polynomials 

The authors of [S] provided a rate of uniform convergence of B,( f ,  . ) to f using 
large deviations techniques. It is the aim of this note to discuss the optimal rate of 
approximation with some historical remarks. More generally we consider the class 
Lip,(L) of Holder continuous functions with exponent a for some 0 < a I1and 
constant L ,  i.e., functions that obey 
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