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the possibility of a "jump hop", associated with impulsive forces, approximated by 
delta functions in "stick-slip" dynamical problems such as chattering chalk on a 
blackboard. This phenomenon appears to be the most likely candidate for the 
origin of the real hop of real hoops, but raises more complicated questions about 
the physics, and makes the analysis commensurately more difficult. 

This analysis of the hopping hoop leads to several conclusions. First, and most 
important, is that Newton's laws and the kinematical constraint for "rough" contact 
are in general inconsistent when the normal force is zero. Second, real hoops that 
hop must skid first, and the subsequent hop cannot be smooth nor semi-smooth. 
Third, there is a rich structure in the behavior of real hoops: vary h and I,vary the 
initial conditions, let t9 be unbounded, follow the bounce(s) after the hop. Finally, 
with respect to this isolated singularity in Mr. Littlewood's Miscellany, he did say 
that in practice, "the hoop skids", but seemed to imply this to be due to a realistic 
friction law rather than a necessary consequence even with an unbounded coeffi- 
cient of static friction. The answer to his query whether the behavior of the hoop is 
intuitive is given by the following 

Theorem. The behavior of hopping hoops is not intuitive. 

Proof: By inspection. 
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Approximation of Hiilder Continuous 

Functions by Bernstein Polynomials 


Peter Math6 

In a recent MONTHLY[S], a special instance of the WeierstraB approximation 
theorem attracted attention: approximation of real Lipschitz functions on [O, 11by 
Bernstein polynomials 

The authors of [S] provided a rate of uniform convergence of B,( f ,  . ) to f using 
large deviations techniques. It is the aim of this note to discuss the optimal rate of 
approximation with some historical remarks. More generally we consider the class 
Lip,(L) of Holder continuous functions with exponent a for some 0 < a I1and 
constant L ,  i.e., functions that obey 
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We present two simple proofs of the following 

Theorem 1. If the function f : [O,l] + 58 is Holder continuous with exponent a and 
constant L then 

I f (x)  -B , , ( f , x ) l  < L  for all n E N and all x E [0, 11. (1) 

In contrast to Gzyl and Palacios [S], who refine the original Bernstein argument 
to treat the specialization to Lipschitz functions, we use more direct arguments 
that are elementary and improve the rate to the optimal one. 

The history of this result is worth recounting. Bernstein first used his epony- 
mous polynomials to prove the Weierstral3 approximation theorem in 1912 [2]. It 
took more than twenty years before results concerning the rate of convergence of 
B,,( f,. ) to f appeared, by Popoviciu [9] and by Kac ([6] and [71). While Popoviciu 
established speed of convergence in terms of the modulus of continuity, Kac 
originally proved exactly Theorem 1. The first proof we present is in the spirit of 
Kac and exploits the probabilistic meaning of the Bernstein polynomials. The 
second version uses Korovkin-type arguments [I], as in the nice exposition of the 
Weierstral3 approximation theorem in [lo, Chapter 1.21. Other approaches are 
reviewed in Lorentz's monograph [8]. 

The probabilistic nature of the Bernstein polynomials can be recognized when 

interpreting the weights x - X I as point probabilities of a binomial 
\ "  1 

distribution with parameters n and x. There are, however, several ways to realize 
this distribution. To establish a connection with empirical distribution functions, 
given n, let u,, . . . , u, be random variables that are independent and uniformly 
distributed on [0, 11. Consider the random function S, : [O,1] + [O, 11defined by 

1 
S , ( x ) : = - E X  ,,,,, (u,) ,  XE[O,11> 

n j = 1  

where xro, denotes the characteristic function of the interval [0, x). S ,  takes only 

the values j/n, j = 0, .  . . , n, with probabilities P(S,(x) = j/n) = ( 7 1xj(1 - x)'-]. 

Thus at any point x the random function value nS,,(x) is binomially distributed 
and we have expectation ES,(x) = x and variance 

Proof of Theorem 1: probabilistic version. By construction B,,( f ,  x) = E f(S,,(x)). 
Using the triangle inequality and Holder continuity we obtain 

I f ( . . )  -Bn( f , x ) I  2 ~ l f ( x )  - f ( ~ , , ( x ) ) I  5 LElx - s , l (x) la .  
Apply the Holder inequality with parameters 2 / a  and 2/(2 - a ) ,  and arrive at 

2 4 2  
If(.) - B , , ( f , x ) l ~ ~ ( ~ l x - S , ( x ) I ]* 

Finally, use the variance formula given in (2) to obtain (1). rn 

Proof of Theorem 1: analytic version Here we consider the mapping 

f E C([O, 11) B,(f> .) E C([O, I ] ) ,  + 
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which is a bounded linear operator that maps nonnegative functions into nonnega-
tive polynomials (and thus is positive). Moreover, letting p,(x) = 1, p,(x)  = x ,  
p2 (x )  = x 2  denote the monomials of degree at most 2, it is easy to check that 

& ( P O ,  " )  = 1, B,(p,,  x )  = x ,  B,(p,, x )  = x2  + x ( l  - x ) / n .  (2.5) 

Denote f x ( y )  :=Ll x - y I". Thus for any function f E Lip,(L) we have 
-f,(y) 4 f ( x )  - f ( y )  4 f x (y )  for all y E [0,11. Applying B,, and using its posi-
tivity we obtain I f ( x )  - B,( f ,  y )  14 B,( f,, y). Hence, for y = x we arrive at 

I f @ ) - B , ( f ,  x )  l 4 B,(fx>x) .  
As a substitute for the Holder inequality the operator B, obeys 

B , ( I ~ I ,x )  I( B ~ ( I ~ I ~ / ~ ,x) )" I2  ( 3 )  

for any function g. Indeed, the geometric-arithmetic-mean inequality 

with 

2 "/2 
p := -, r : =  (B , , ( l g l2 / " , x ) )  , and a : = l g ( y ) 1 2 / u r 1 - 2 / "

a 
for y E [O,1] 

yields 

Using the positivity of B, we finally arrive at 

B , ( I ~ I ,x )  I~ / P ( B ~ ( I ~ I ' / " ,x ) ) " '~  + ( 1  - ~ / P ) ( B ~ ( I ~ I ~ / " , x ) ) " / ~  

= ( ~ ~ ( l g121u,x ) ) " " ' ~ ,  

which proves (3).Thus, for g :=f ,  we obtain 

f ( x )  - ~ r t ( f , x )I 5 ( ~ ~ , ( f ~ / ~ ,x ) ) " " ~ .  (3.5)  

Using the linearity of B, and its values at p,, p,, and p2 given in (2.5), and 
observing that f:/"(y) = L ~ / " ( x ~- 2xy + y2) ,  we conclude that B,(f:/", x )  = 

~ ~ / " x ( l- x ) / n .  Substituting this equality into (3.5)completes the proof. 

For completeness we derive the asymptotically exact behavior of the error. The 
accuracy of the approximation of Holder continuous functions by Bernstein poly-
nomials is quantified by 

Theorem 1 can thus be rewritten as e,(L, a )  I ~ ( 1 / ( 4 n ) ) " / ~ .This is refined in 

Theorem 2. lim,,,n"/2e,(~, a )  = L2-"/21?((a + 1) /2) /  6. 

Kac proved that the rate of convergence cannot be improved on the class of 
Holder continuous functions by establishing an appropriate lower bound for the 
specific function f l I 2  E Lip,(L). For this particular choice we have 
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Popoviciu derived the exact asymptotics of the mean absolute deviation 
E I S , ( k )  - x 1, i.e., the case a = 1, by providing the explicit representation 

where j is the unique integer for which x E [ j / n ,( j  + l ) / n ) .  This representation 
has a long history; see [4]for a proof and historical details, beginning in 1730, 
when De Moivre gave a similar explicit formula for the case x = 1/2 .  The 
derivation of (5 )  is combinatorial and the analysis of the asymptotic behavior is 
non-elementary. Our arguments do not rely on the representation (5). Instead we 
again try to keep close to probabilistic arguments and use the De  Moivre-Laplace 
Theorem on the binomial approximation of the normal distribution. 

Our proof of Theorem 2 requires basic knowledge of probability theory and real 
analysis. For convenience we split the proof of Theorem 2 into two lemmas. As the 
lower bound in (4) suggests we are concerned with the asymptotic behavior of 
n a / 2 ~ I S , ( 1 / 2 )- 1/21", and more generally we study the functions g,(x) := 

n a I 2E I S , ( x )  - x 1". Given a we define K ,  := 2" i2T ( ( a  + 1) /2 ) /  fi and g ( x )  
:= ( x ( 1  - x ) ) " / ~ K , .  

Lemma 1. limn, ,g,(x) = g ( x )  for evely x E [0, 11. 

Moreover the functions g, belong to Lip,/,(l) as can be seen from 

Lemma 2. I g , ( x )  - g , (y )  I I I x - 1"12 for all n E N and all x ,  y E [O, 11. 

Suppose for a moment that both lemmas have been proved. Pointwise conver-
gence from Lemma 1 and uniform Holder continuity from Lemma 2 imply uniform 
convergence as stated in 

Proposition 1. limn, ,sup,, 1 g , ( x )  - g( x )  1 = 0. 

Proof: Our arguments follow the usual proof of the Arzeli-Ascoli Theorem. In 
fact, for any rn E N the set { j / rn ,j = 0, .  . . ,rn) is finite so that Lemma 1 provides 
some n o  such that 

Thus for an arbitrary x E [O, 11 let, j, be chosen such that I x - j,/mI I 1/(2rn). 
Then we conclude, using Lemma 2, 

for n 2 n o  and all x E [O, 11. Since rn may be chosen arbitrarily large we have 
established uniform convergence. 

Now the proof of Theorem 2 follows easily. 
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Since l,"ta-'min(1, t-2} dt < and we have pointwise convergence as in (6),  the 
Lebesgue Dominated Convergence Theorem implies 

F ( ( a  + 1)/2) 
= ( ~ ( 1- x) )  a / Z 2  a /2 

J;; = s ( x > .  

It is evident from the proof that K, is the a t h  absolute moment of the standard 
normal distribution, i.e., K, = El yl", where y is standard normal. This could also 
be guessed, since the De Moivre-Laplace Theorem may be viewed as a special 
instance of the Central Limit Theorem. 

Proof ofLemma 2. Since Ilala - Ib Ia I s I a  - bI" for all a , b  E R and 0 < a 4 1, 
we have 

1
Now suppose x < y and recall that Sn(x) - Sn(y) = -C,"=,n ~ , x , y j ( ~ j ) ,which is 

the sum of n independent random variables. It is well known that then the 
variance of the sum equals the sum of the variances, which implies 

We have thus proved the lemmas and hence Theorem 2. We admit that deriving 
the exact asymptotics of the error is much more elaborate than the simple 
arguments leading to Theorem 1.The gain in accuracy is less than m. 

To complete our development of properties of the Bernstein polynomials using 
the probabilistic representation, we add the following result, originally proved by 
Brown, Elliott, and Paget [3]. 

Proposition 2. If the function f : [0, 11 + R is Holder continuous with exponent a 
and constant L then so are the corresponding Bemstein polynomials B,( f ,  . ). 

Proof: Use the triangle inequality, Holder continuity, the representation of S,(x) 
as an empirical distribution function, and finally the Holder inequality to derive for 
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x 5 y the estimates 

This proof is brief and elementary, but heavily uses the specific realization of the 
S,(x) through an empirical distribution function, thereby correlating the random 
variables S,(x) and S,(y) properly. This was also crucial for proving Lemma 2. 
The simple arguments leading to Theorem 1 did not rely on any specific realiza- 
tion. 
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An Extension of the Wallace-Simson Theorem: 
Projecting in Arbitrary Directions 

Miguel de Guzman 

1. THE WALLACE-SIMSON LINE. The Wallace line has been a popular .object 
of study for many geometers during the two past centuries. Let us start by recalling 
the theorem. 

The Wallace-Simson Theorem. Consider a triangle ABC. The locus of all those points 
P in its plane such that the orthogonal projections of P on the three sides of the triangle 
are collinear is the circumcircle of ABC. The line of the projections is called the 
Wallace-Simson line of P with respect to ABC. 
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