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On an Example of Jacobson 

B. Sury 

In Vol. I11 of Nathan Jacobson's celebrated book [2], there appears the following 
exercise on p. 49: 

Let Fp be the field with p elements, and P = Fp(x, y) where x, y are indeteminates. 
Let E be the subfield F1,(xP - x, yL x). Show that [ P  :El =p 2 ,  that P / E  is not 
separable, and that P/E contains no purely inseparable element. 

Now, it is seen immediately that Jacobson's example is really a nonexample. 
Surprisingly, none of the other standard graduate texts seem to give an example, 
although one can be found in [I, Ex. 17, Ch. V]. Here is another: 

Example. Let P = F,,(x, y) and let E be the subfield Fp(xp - x, yPx). Then 

(i) [ P  :El =P2, 
(ii) 	P/E is not separable, and 

(iii) 	P/E contains no purely inseparable element over E except those contained 
in E .  

Recall that an element x in an algebraic closure K of a field K is separable if 
its minimal polynomial f (T)  in K[T]  has all roots (in K )  simple. 

It is said to be purely inseparable over K if it is fixed by all K-automorphisms 
of K. More generally, an algebraic extension L of K is said to be purely 
inseparable if the only elements of L that are separable over K are the elements 
of K itself. Any algebraic extension L of K is built in two stages: K cL,, cL,  
where L,, is separable over K, and L is purely inseparable over L,,. 

One has as a consequence of this definition: 

Let x E K, and let f (T)  be its minimal polynomial over K. Then, the following 
statements are equivalent: 

(i) x is not separable over K ;  
(ii) The derivative f '(T) is the zero polynomial; and 

(iii) K is of characteristicp > 0, and f (T)  E K[TP]. 

Under any of these equivalent hypotheses, if n is the smallest integer such that 
XP" E K, then the minimal polynomial over K is f (T)  = T"" - xp". 

We return to our example now, 

P = FI,(x, Y)  3 E = DI,(a, b) where a = xP - x, b =yPx. Then, over E, y satisfies 
the polynomial g(T) = T " ~+ r ~ p ( p - l )- s,  where r = b/a and s = bP/a. Also, 
P = E(y). 
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We note: 

(a) x is separable over E and y is inseparable over E .  

The separability of x follows from the preceding remarks by looking at the 

polynomial Tp  - T - (xP - x). This is a polynomial over E satisfied by x. In fact, 

the Artin-Schreier Theorem [3, Ch. 81 shows that this polynomial is irreducible and 

is the minimal polynomial of x over E .  HoweGer, we do not need this fact for the 

proof. 

The inseparability of y is a consequence of the observation that TP - y1' is the 

minimal polynomial of y over the field E(x). 


(b) y is not purely inseparable over E .  

As y" G E E,  one has also yp2 G E E ;  otherwise, from g(y)  = 0 one concludes 

yP(P1)  E E ,  which would lead to the erroneous conclusion y" E .  


(c) x is not a p-th power in P .  

This is easy to check by a simple comparison of like powers of x in view of the 

algebraic independence of x and y over [F,. 


Suppose t E P \ E  is purely inseparable over E .  Then tP E E (because if 
tp" E E for some n 2 2, then since the degree of P = E(y)  over E is at most p2, 
n 1 2. But, if n # 1, then P would be purely inseparable, a contradiction). 

Look at P 3E(t)  3E.  Now, the minimal polynomial of t over E is T" - t", 
and [E ( t ) :  El = p .  Note that c r p  E E for all cr E E(t). 

Let [ P :  E(t)] = I, say. If the minimal polynomial of y over E( t )  is f (T)  = 

C ~ = , a i T 1 ,then y satisfies the polynomial f(T)" = L o a f  Tip.  As this is the 
minimal polynomial of y over E ,  f(T)" divides g(T). If f(T)PCuiTi = T"' + 
~ T I I ( P - ~ )- s, one gets ui = 0 if i + 0 mod p .  Renaming u,,, as ui, the equation 

C ~ = , a f T i p ~ ~ - ' ui Tip = Tp2+ rTP(PP1)- s gives inductively that u, = sbp for some r = O  

b, E P .  Therefore, comparing the coefficients of TJ'(p-') on both sides, we see 
r = sup for some u E P .  This means that x is a p-th power in P ,  which is a 
contradiction. 

Therefore, P has no purely inseparable elements outside of E. 

Remarks. As a consequence of the proof, it is clear that Tp2  + IT^(^-') - s is the 
minimal polynomial of y over E .  The extension P of E is built up in two steps 
P 3 E(x)  3 E with P purely inseparable of degree p over E(x)  and E(x)  
separable of degree p over E .  

REFERENCES 

1. N. Bourbaki, Algebre, Actualites Scientifiques et Industrielles 1102, Hermann, Paris, 1950. 
2. N. Jacobson, Lectures in abstract algebra, Vol. 111, Van Nostrand, 1964. 
3. S. Lang, Algebra, Addison-Wesley Publishing Company, Mass., 1965. 

School of Mathematics, Tatn Institute of Furtdanzental Research, Munzbai 400005, Irtdia 
sury@matl~.tifr:res~ir~ 

[Monthly 106 

mailto:sury@matl~.tifr:res~ir~

