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Field Theory: From Equations 
to Axiomatization 

Part I 

Israel Kleiner 

1. INTRODUCTION. The evolution of field theory spans a period of about 100 
years, beginning in the early decades of the 19th century. This period also saw the 
development of the other major algebraic theories, namely group theory, ring 
theory, and linear algebra. The evolution of field theory was closely intertwined 
with that of the other three theories, as we shall see. 

Abstract field theory emerged from three concrete theories-what came to be 
known as Galois theory, algebraic number theory, and algebraic geometry. These 
were founded, and began to flourish, in the 19th century. Of some influence in the 
rise of the abstract field concept were also the theory of congruences and (British) 
symbolical algebra. The 19th century's increased concern for rigor, generalization, 
and abstraction undoubtedly also had an impact on our story. 

In this paper we discuss the sources of field theory as well as some of the main 
events in its evolution, culminating in Steinitz's abstract treatment of fields. 

2. GALOIS THEORY. For three millennia (until the early 19th century) algebra 
meant solving polynomial equations, mainly of degrees up to 4. Field-theoretic 
ideas are implicit even here. For example, in solving the linear equation ax + b = 0, 
the four algebraic operations come into play and hence implicitly so does the 
notion of a field. In the case of the quadratic equation ax2 + bx + c = 0, its 
solutions, x = ( - b  + d G ) / 2 a ,  require the adjunction of square roots to 
the field of coefficients of the equation. The concept of adjunction of an element 
to a field is fundamental in field theory. 

Field-theoretic notions appear much more prominently, even if at first still 
implicitly, in the modern theory of solvability of polynomial equations. The 
groundwork was laid by Lagrange in 1770, but the field-theoretic elements of the 
subject were introduced by Abel and Galois in the early decades of the 19th 
century. Ruffini's 1799 proof of the insolvability of the quintic had a major gap 
because he lacked sufficient understanding of field-theoretic ideas [16]. 

Such ideas were starting points in Galois's 1831 "Mtmoire sur les conditions de 
rCsolubilitC des Cquations par radicaux" [16, p. 3051: 

One can agree to regard all rational functions of a certain number of 
determined quantities a pyiori. For example, one can choose a particular root 
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of a whole number and regard as rational every rational function of this 
radical. When we agree to regard certain quantities as known in this manner, 
we shall say that we adjoin them to the equation to be resolved. We shall say 
that these quantities are adjoined to the equation. With these conventions, 
we shall call rational any quantity which can be expressed as a rational 
function of the coefficients of the equation and of a certain number of 
adjoined quantities arbitrarily agreed upon :.. . . One can see, moreover, that 
the properties and the difficulties of an equation can be altogether different, 
depending on what quantities are adjoined to it. 

It is clear that Galois has a good insight into the fields that we would denote today 
by F(u,, u,, . . . , u,), obtained by adjoining the quantities u,, u,, . . . , u,, to the 
(field of) coefficients of an equation. In the specific example mentioned, he has in 
mind a quadratic field, Q(&?). 

Galois was the first to use the term "adjoin" in a technical sense. The notion of 
adjoining the roots of an equation to the field of coefficients is central in his work 
Dl, [161. 

One of the fundamental theorems of the subject proved by Galois is the 
Primitive Element Theorem. This says (in our terminology) that if E is the splitting 
field of a polynomial f (x)  over a field F, then E = F(V) for some rational 
function V of the roots of f(x). Galois used this result to determine the Galois 
group of the equation f(x)  = 0 [I], [16]. The Primitive Element Theorem was 
essential in all subsequent work in Galois theory until Artin bypassed it in the 
1930s by reformulating Galois theory, for he felt that the theorem was not intrinsic 
to the subject [9]. 

3. ALGEBRAIC NUMBER THEORY. The central field-theoretic notion here, due 
independently to Dedekind and Kronecker, is that of an algebraic number field 
Q(a), where a is an algebraic number. How did it arise? Mainly from three major 
number-theoretic problems: Fermat's Last Theorem (FLT), reciprocity laws, and 
representation of integers by binary quadratic forms. Although all three problems 
have to do with the domain of (ordinary) integers, in order to deal with them 
effectively it was found necessary to embed them in domains of what came to be 
known as algebraic integers. The following examples illustrate the ideas involved. 

(a) To prove FLT for (say) n = 3, that is, to show that x3 + y3 = z3  has no 
nonzero integer solutions, one factors the left side to obtain the equation 
(x + y)(x + yw)(x + yw2) = z3, where w is a primitive cube root of unity, w = 

( - 1 + fii)/2.  This is now an equation in the domain D = {a + bw : a ,  b E Z )  of 
algebraic integers. This approach to FLT (for n = 3) was essentially used by Euler 
and later by Lam6 and others [5]. 

(b) Gauss's quadratic reciprocity law appeared in his Disquisitiones Arithmeticae of 
1801. It says that x 2  = p  (mod q)  is solvable if and only if x2  = q (modp) is 
solvable, unless p = q = 3 (mod 4), in which case x2  = p (mod q)  is solvable if and 
only if x2  = q (mod p )  is not. Here p and q are odd primes [a]. 

Gauss and others tried to extend this result to "higher" reciprocity laws. For 
example, for cubic reciprocity one asks about the relationship between the solvabil- 
ity of x3 = p (mod q)  and x" q (mod p).  These higher reciprocity-type problems 
are much more difficult to deal with than quadratic reciprocity. Gauss remarked 
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that [8, p. 1081: 

The previously accepted laws of arithmetic are not sufficient for the founda- 
tions of a general theory [of higher reciprocity]. . . Such a theory demands 
that the domain of arithmetic be endlessly enlarged. 

His comments were no idle speculation. In fact, he himself began to implement the 
above "programme" by formulating and proving a law of biquadratic reciprociQ. To 
do that he extended the domain of arithmetic by introducing what came to be 
known as the gaussian integers G = {a + bi : a, b E 2 ) .  He could not even formu- 
late such a law without introducing G [8]. 

(c) The problem of representing integers by binary quadratic forms, namely 
determining when n = ax2 + bxy + cy2 (a,'b,'c E Z),  goes back to Fermat. In 
particular, Fermat asked and answered the question: which integers n are sums of 
two squares, n = x2 + y2? In the Disquisitiones Gauss studied the general problem 
very thoroughly, developing a comprehensive and beautiful, but very difficult, 
theory. To gain a deeper understanding of Gauss's theory of binary quadratic 
forms, Dedekind found that he, too, needed to extend the domain Z of integers. 
For example, even in the simple case of representing integers as sums of two 
squares, it is the equation (x + yi)(x - yi) = z 2  rather than x2  + y2  = z2  that 
yields conceptual insight [I], [lo]. 

Dedekind's ideas. The fundamental question in extending the domain of ordinary 
arithmetic to "higher" domains is whether such domains behave like the integers, 
namely whether they are unique factorization domains (UFDs). It is this property 
that facilitates the solution of problems (a)-(c). While the domains D and G 
introduced above are UFDs, most domains that arise in connection with the three 
number-theoretic problems we have described are not. For example, when we 
factor the left side of x" + y" = z" for n > 23, the resulting domains are never 
UFDs. To rescue unique factorization in such domains Dedekind introduced (in 
Supplement X (1871) to Dirichlet's Vorlesungen iiber Zahlentheorie) ideals and 
prime ideals, and showed that every ideal in these domains is a unique product of 
prime ideals [lo]. 

But what are the domains with restored unique factorization? To answer 
that-one of the fundamental questions of his theory-Dedekind needed to 
introduce fields, in particular algebraic number fields &(a), where a is a root of a 
polynomial with integer coefficients. These were the natural habitats of his 
domains, just as the rationals are the natural habitat of the integers. The domains 
in question were then defined as "the integers of Q(a)," namely those elements of 
Q(a) that are roots of monic polynomials with integer coefficients. Dedekind 
showed that they form a commutative ring with identity and without zero divisors 
whose field of quotients is Q(a) [3], [lo], [13]. 

Given Dedekind's predisposition for abstraction-a rather rare phenomenon in 
the 1870s, he placed his theory in a broader context by giving axiomatic definitions 
of rings, fields, and ideals. Here is his definition of a field [I,  p. 1171: 

By a field we will mean every infinite system of real or complex numbers so 
closed in itself and perfect that addition, subtraction, multiplication, and 
division of any two of these numbers again yields a number of the system. 
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To Dedekind, then, fields were subsets of the complex numbers, which is, of 
course, all he needed for his theory of algebraic numbers. Still, an axiomatic 
definition in number theory/algebra, even in this restricted sense, is remarkable 
for that time. Also remarkable are Dedekind's use of infinite sets ("systems"), 
which predates Cantor's, and his "descriptive" rather than "constructive" defini-
tion of a mathematical object as a set of all elements of a certain kind satisfying a 
number of properties. 

The field concept was a unifying mathematical notion for Dedekind. Before his 
definition of a field he says [4, p. 1311: 

In the following paragraphs I have attempted to introduce the reader into a 
higher domain, in which algebra and number theory interconnect in the most 
intimate manner. . . . I became convinced that studying the algebraic relation- 
ship of numbers is most conveniently based on a concept that is directly 
connected with the simplest arithmetic properties. I had originally used the 
term "rational domain," which I later changed to "field." 

Hilbert remarked that Gauss, Dirichlet, and Jacobi had also expressed their 
amazement at the close connection between number theory and algebra, on the 
grounds that these subjects have common roots in (as Dedekind would put it) the 
theory of fields [4]. 

Dedekind produced several editions of his groundbreaking theory of ideal 
decomposition in algebraic number fields. In his mature 1894 version (4th edition 
of Dirichlet's Zahlentheorie) he included important concepts and results on fields 
-nowadays standard-such as [9, pp. 130-1321: 

(i) If 	 S is any subset of the complex numbers containing the rationals, the 
intersection of all fields containing S is a field; it is called "rational with 
respect to S." 

(ii) He defines field isomorphism, calling it "permutation of the field," 	as a 
mapping of a field E onto a field F that preserves all four operations of 
the field. He  observes that if F is nonzero, the mapping is one-one. He  also 
notes that the mapping is the identity on Q. 

(iii) If 	E is a subfield of K ,  he defines the degree of K over E as the dimension 
of K considered as a vector space over E. He shows that if the degree is 
finite then every element of K is algebraic over E. 

Kronecker's ideas. Kronecker's work was broader but much more difficult than 
Dedekind's. He developed his ideas over several decades, beginning in the 1850s, 
trying to frame a general theory that would subsume algebraic number theory and 
algebraic geometry as special cases. In his great 1882 work Grundziige einer 
anthmetischen Theone der algebraischen Grossen he developed algebraic number 
theory using an approach entirely different from Dedekind's. One of his central 
concepts was also that of a field-he called it "domain of rationality," defined as 
follows [9, p. 1271: 

The domain of rationality (R', R", R"', . . . ) contains every one of those 
quantities which are rational functions of the quantities R', R", R"', . . . with 
integer coefficients. 

Note how different Kronecker's "definition" of a field is from Dedekind's! It is a 
constructive description, rather. than the kind of definition that would be accept- 
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able to us today. But it was dictated by Kronecker's views on the nature of 
mathematics. 

Kronecker rejected irrational numbers as bona fide entities since they involve 
the mathematical infinite. For example, the algebraic number field & ( a )  was 
defined by Kronecker as the quotient field of the polynomial ring Q[x] relative to 
the ideal generated by x2  - 2, though he would have put it in terms of congru- 
ences rather than quotient rings. These ideas-contain the germ of what came to be 
known as Kronecker's Theorem, namely that every polynomial over a field has a 
root in some extension field [9], [13]. 

It is interesting to compare this definition of ~ ( a )  with Cauchy7s definition in 
the 1840s of the complex numbers as polynomials over the reals modulo x2  + 1 
(and compare the latter with Gauss's integers modulo p) .  Cauchy's rationale was to 
give an "algebraic" definition of complex numbers that would avoid the use of 
J-1. 
Dedekind vs. Kronecker. Dedekind and Kronecker were great contemporary alge- 
braists. Both published pathbreaking works on algebraic number theory. But their 
approaches to the subject were very different. Both were guided in their works by 
their "philosophies" of mathematics, and these too were very different [13]. 
Kronecker was perhaps the first preintuitionist, Dedekind likely the first prefor- 
malist (cf. Kronecker's "God made the [positive] integers, all the rest is the work of 
man" with Dedekind's "[The natural] numbers are a free creation of the human 
mind"). To Kronecker mathematics had to be constructive and finitary. Dedekind 
did not hesitate to use axiomatic notions and the infinite. While Kronecker made 
frequent pronouncements on these topics, Dedekind made few; his views became 
known mainly from his works-conceptual and abstract. Some examples: 

(i) Since Kronecker's domains of rationality had to be generated by 	finitely 
many elements (the R', R", R"', . . . ), his definition would not admit the 
totality of algebraic numbers as a field. Dedekind had no problem in 
considering the set of all complex numbers that are roots of polynomial 
equations with integer coefficients (viz. the set of all algebraic numbers) as 
a bona fide mathematical object. 

(ii) On the other hand, Kronecker put 	no restriction on the nature of the 
entities R', R ,  R"', . . . -they could, for example, be indeterminates or 
roots of algebraic equations. So Q(x) was a legitimate field to Kronecker. 
In fact, the adjunction of indeterminates to a field was a cornerstone of his 
approach to algebraic number theory. Dedekind, recall, defined his fields 
to be subsets of the complex numbers (but see Section 4). 

(iii) Since 	 Kronecker did not accept .rr (say) as a legitimate number, he 
identified Q(T) with Q(x) (x an indeterminate), thus claiming that tran- 
scendental numbers are indeterminate! To Dedekind Q(.rr) was a perfectly 
legitimate entity not requiring any assistance from Q(x). 

4. ALGEBRAIC GEOMETRY. The examples of fields we have come across so far 
have been mainly fields of numbers. Here we encounter principally fields of 
functions, in particular, algebraic functions and rational functions. The ideas are 
due mainly to Kronecker and Dedekind-Weber. 

Fields of algebraic functions. Algebraic geometry is the study of algebraic curves 
and their generalizations to higher dimensions, algebraic varieties. An algebraic 
curve is the set of roots of an algebraic function, that is, a function y = f(x)  
defined implicitly by a polynomial equation P(x,  y) = 0. 

Aug.-Sept., 19991 THE EVOLUTION OF .  . . 	 681 



Several approaches were used in the study of algebraic curves, notably the 
analytic, the geometric-algebraic, and the algebraic-arithmetic. In the analytic 
approach, to which Riemann (in the 1850s) was the major contributor, the main 
objects of study were algebraic functions f(w, z )  = 0 of a complex variable and 
their integrals, the so-called abelian integrals. It was in this connection that 
Riemann introduced the fundamental notioq of a Riemann surface, on which 
algebraic functions become single-valued. Riemann's methods, however, were 
nonrigorous, relying heavily on the physically obvious but mathematically question- 
able Dirichlet Principle [3], [ I l l .  

Dedekind and Weber, in their important 1882 paper "Theorie der algebrais- 
chen Funktionen einer Veranderlichen," set for themselves the task of making 
Riemann's ideas rigorous, or, as they put it [ l l ,  p. 1541: 

The purpose of the[se] investigations. . . is to justify the theory of algebraic 
functions of a single variable, which is one of the main achievements of 
Riemann's creative work, from a simple as well as rigorous and completely 
general viewpoint. 

To accomplish this, they carried over to algebraic functions the ideas that Dedekind 
had earlier introduced for algebraic numbers. Specifically, just as an algebraic 
number field is a finite extension Q(a) of the field Q of rational numbers, so 
Dedekind and Weber defined an algebraic function field as a finite extension 
K = C(z)(w) of the field C(z) of rational functions (in the indeterminate z). That 
is, w is a root of a polynomial p ( t )  = a, + a,t + a,t2 + ... +an tn ,  where a i  E C(z) 
(we can take a i  E C[Z]). Thus w = f (z )  is an algebraic function defined implicitly 
by the polynomial equation P(z ,  w) = a, + a,w + a,w2 + ... +a,,w" = 0. In fact, 
all the elements of K = C(z)(w) = C(z, w) are algebraic functions. 

Now let A be "the integers of K"; that is, A consists of the elements of 
K = C(z)(w) that are roots of monic polynomials over C[z] (cf. "the integers of 
&(a)," Section 3). By analogy with the case of algebraic numbers, here too A is an 
integral domain and every nonzero ideal of A is a unique product of prime ideals 
[I], [3]. Incidentally, the meromorphic functions on a Riemann surface form a field 
of algebraic functions, with the entire functions as their "integers." 

Dedekind and Weber were now ready to give a rigorous, algebraic definition of 
a Riemann surface S of the algebraic function field K :  It is (in our terminology) 
the set of nontrivial discrete valuations on K. The finite points of S correspond to 
the ideals of A; to deal with points at infinity of S ,  they introduced the notions of 
"place" and "divisor" [3]. They developed many of Riemann's ideas on algebraic 
functions algebraically and rigorously. In particular, they gave a rigorous algebraic 
proof of the important Riemann-Roch Theorem [I], [3], [ l l ] .  

Dedekind and Weber were at heart algebraists. They felt that algebraic function 
theory is intrinsically an algebraic subject, hence it ought to be developed alge- 
braically. As they put it: "In this way, a well-delimited and relatively comprehen- 
sive part of the theory of algebraic functions is treated solely by means belonging 
to its own domain" [ l l ,  p. 1561. 

Beyond their technical achievements in putting major parts of Riemann's 
algebraic function theory on solid ground, the conceptual breakthrough by 
Dedekind and Weber lay in pointing to the strong analogy between algebraic 
number fields and algebraic function fields, hence between algebraic number 
theory and algebraic geometry. This analogy proved most fruitful for both theories. 
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an equal footing with geometry by providing it with logical justification. They did 
this by distinguishing between arithmetical algebra-laws of operation with positive 
numbers, and symbolical algebra-a subject newly created by Peacock, which dealt 
with laws of operation with numbers in general. 

Although the laws were carried over verbatim from those of arithmetical 
algebra, in accordance with the so-called Principle of Permanence of Equivalent 
Forms, the point of view was remarkably modern. Witness Peacock's definition of 
symbolical algebra, given in his Treatise of Algebra of 1830 [14, p. 351: 

The science which treats of the combinations of arbitrary signs and symbols 
by means of defined though arbitrary laws. 

Quite a statement for the early 19th century! Such sentiments were about a 
century ahead of their time. And of course one did have to wait about a century to 
have what Peacock had preached put fully into practice. Nevertheless, the creation 
of symbolical algebra was a significant development, even if not directly related to 
fields, signalling (according to some) the birth of abstract algebra [2]. 

REFERENCES 

I. G. Bashmakova and E. I. Slavutin, Algebra and algebraic number theory, in ~Watlzernatics oftlze 
19th Century, ed, by A. N. Kolmogorov and A. P. Yushkevich, Birkhauser, 1992, pp. 35-135. 
G.  Birkhoff, Current trends in algebra, Amer. 1Wat/1. ~Wonthly 80 (1973) 760-782, and corrections 
in 81 (1974) 746. 
N. Bourbaki, Elements of the Histoy of~Wat/~ernatics, Springer-Verlag, 1984. 
L. Corry, ~WoderrzAlgebra and tile Rise ofMathenzatica1 Strzrctures, Birkhauser, 1996. 
H .  M. Edwards, Fermat's Last Theorern: A Genetic Irztroductiorz to Algebmic Number Theory, 
Springer-Verlag, 1977. 
D. Eisenbud, CornmutatiueAlgebrci with a View Toward Algebraic Geometry, Springer-Verlag, 1995. 
E. Galois, Sur la theorie des nombres, English translation in S. Stahl, Introductory Modern Algebln: 
A Historical Approach, Wiley, 1997, pp. 277-284. 
K. Ireland and M. Rosen, A Classical Introductiorz to Modern Nunrber Theory, 2nd ed., Springer- 
Verlag, 1982. 
B. M. Kiernan, The development of Galois theory from Lagrange to Artin, A ~ c / I .Hist. Exact Sci. 8 
(1971/72) 40-54. 
I. Kleiner, The roots of commutative algebra in algebraic number theory, Math. ~Mtrg. 68 (1995) 
3-15. 
D. Laugwitz, Bernllalzl Riemann, 1826-1866, Birkhauser, 1999. Translated from the German by 
A. Shenitzer. 

12. 	 E. H. Moore, A doubly-infinite system of simple groups, New York 1Wath. Soc. Bull. 3 (1893) 
73-78. 

13. 	 W. Purkert, Zur Genesis des abstrakten Kiirperbegriffs I, 11, Naturwiss., Techn. L L .  Med. 8 (1971) 
23-37 and 10 (1973) 8-20. Unpublished English translation by A. Shenitzer. 

14. 	 H. M. Pycior, George Peacock and the British origins of symbolical algebra, Historia Matlr. 8 
(1981) 23-45. 

15. 	 J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, 1992. 
16. 	 J.-P. Tignol, Galois' Theory ofAlgbraic Equations, Wiley, 1988. 

THE EVOLUTION O F .  . . 	 [Monthly 106 


