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On a Convolution of Eulerian Numbers 

10609 [1997, 6641. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. 
Let a(1, m ,  n )  = xi,o (i)(1+ m - k)n-k(k - Ilk.  Prove that C;=l a(1, m ,  n )  = 

( ( m+ n + 1) /2 )a(n ,  m ,  n )  - ( ( m+ 1) /2 )mn.  

Solution by David Callan, University of Wisconsin, Madison, WI. We compare coefficients 
of m.1 to prove the desired identity. First we express a(1, m ,  n )  using Eulerian numbers. The 
classical Eulerian number ( i )is the number of permkitions of [n]= 1 1 ,  . . . , n }consisting 
of k ascending runs (with descents at k - 1 locations). These are counted by placing 
n numbered objects into k numbered boxes to avoid properties P I , . . . , Pk, where Pi is 
the property that box i is empty or has only objects greater than those in the preceding 
box. A careful application of the inclusion-exclusion principle yields the formula ( i )= 

E;=~(- I ) /  ("7')(k  - j)ll. ~ o t ethat (:) = 1. 

The definition of ( i )yields x i = o ( i )= n ! . We also need E i = o  k ( i )  = i ( n + I ) ! . To 
prove this combinatorially, we alter each permutation of [n]with k runs by placing n + 1 
at the end of one run. This can be done in k ways and yields a permutation of [n+ 11. A 
permutation of [n+ 11 arises in this way if n + 1 is at the end, not if n + 1 is at the start, and 
otherwise if and only if the element preceding n + 1 is greater than the element following 
it. Thus we obtain half the permutations of [n+ 11. 

We claim that 
n 1 n - j

a ( ~ . m , n ) = ~ ~ ( n ) () m i ,. 
j=o i=o J 1 

which we prove by comparing coefficients of m.'. By applying the binomial theorem to 
( I  - (i)( " T ~ )  k)"- ' .  Rear-k + m)n-k ,we extract the desired coefficient as ~ : = ~ ( - l ) ~  ( 1  -

ranging binomial coefficients converts this to (;) l ) k  ( " i i ) ( l  - k)"-j .  After can- 

celing the (;), it remains only to rewrite the sum as x j = o  jn;j). We use our formula for Eu- 

lerian numbers, let k = i -	 = ( - l ) r  (r),h , apply the elementary identity ~ i = ~ ( - l ) ~ ( n i ~ )  
and finally interchange k with 1 - k to obtain 

1 n - j  	 n - j
= 	E ( - l ) ' - k  


k=O I - k  k=O 


Using (*), we compute coefficients of m.1 in the desired identity. For j = n + 1 ,  the 
contributions cancel. For j = n ,  the coefficient is n. For j < n ,  the coefficient of m.i in 
C;= a ( I ,  m , n )  divided by ( y )  is 

n 1 n - j  

~ ~ ( n ~ i ) = ~ ( n + l - i ) f : ( n ~ ' ) = ( n + ~ ) e ( 
/= l  i=l 1 i=l i=l 	 i=l 1, i = l) - e i ( n ; ' )  

1 	 n + j + l
= ( n + l ) ( n- j ) !  - - (n  - j + I ) !  = (n- j ) !

2 2 ' 

For j < n , the coefficient of m,j in ( ( m+ n + 1) /2 )a(n ,m ,  n )  - ( ( m+ 1)/2)mnis 
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Editorial comment. From (*) we infer that a(1, 1 ,  n )  is the total number of arrangements 
with at most 1 ascending runs that can be formed from subsets of [ n ] .  

Solved also by R. I. Chapman (U. K.), Q. Darwish (Oman), H.-I. Seiffert (Germany), and the proposer 

A Variation on Additive Bases 

10610 [1997, 6641. Proposed by Richard Hall, University of Portsmouth, Portsrnoutlz, 
England Given a positive integer rn, let C(rn)b& the greatest positive integer k such that, 
for some set S of rn integers, every integer from 1 to k belongs to S or is a sum of two not 
necessarily distinct elements of S. For example, C ( 3 )= 8 with S = ( 1 ,  3 , 4 } .  
(a )Show that, for all e > 0 ,  114 < c(nz)/rn2< 112 + E for all sufficiently large rn. 
(b)* Improve the asymptotic bounds in part (a) .  

Solution to ( a )  by the National Security Agency Problems Group, Fort Meade, MD. Let 
[n]ldenote the first n positive multiples of I .  When rn is even, with rn = 2t,  let S = 
[t- 11 1 U [t+ l ] t .Since S has size rn and represents all positive integers up to ( t+ l ) t  + t ,  
we have C ( m )> t2  + 2t.  Thus c ( r n ) / m 2> ( t 2+ 2 t ) 1 ( 2 t ) ~> 114. 

When rn is odd, with rn = 2t + 1 ,  let S = [ t ] l+ [t + l ] ( t+ 1). Since S has size rn and 
represents all positive integers up to ( t+ 1 ) 2  + t + 1 ,  we have C ( m )> ( t+ l ) ( t+2).  Thus 
c(rn)/rn2> ( t  + l ) ( t+ 2) / (2 t+ 112 > 114. 

A set of size rn represents at most 2rn+ (';) integers. Hence c(rn)/rn2( 1/2+3/(2rn) < 
112 + E for rn > 3/(26) .  

Solution to ( b )  by the GCHQ Problems Group, Cheltenharn, UK. We show that 9/32 < 
c(rn)/rn2< 419 + E for all sufficiently large rn. 

For the lower bound, we construct a set that represents many integers by spreading the 
summands apart more quickly than in (a).  Write rn as 16i + j ,  where -7 5 j 5 8, 
and let A = [ I ,  3 i] ,  B = [2,7i  + j ]3i ,  C = (7i + j)3i + [ I ,  3i](3i+ I ) ,  and D = 
(7i + j)6i + 6i + [0,  3 i ] ,  where [x, y] = { n  E 23: x 5 n 5 y}. Let S = A U B U C U D. 

From A and A + A we get [ I ,  6 i ] ,from A + B we get [6i + 1 ,  (7i + j)3i + 3i] ,and 
from C and A + C we get [(7i+ j)3i + 3i + 1 ,  30i2 + 3 i ( j  + 2 ) ] .  

For r E [ I ,  4i + j ]  and s E [ I ,  3 i ] ,we have (3i + r - s + 1)3i E B and (7i + j)3i + 
s(3i + 1 )  E C ,and the sum of these integers is (10i +r +j +1)3i +s .  Thus B +C contains 
[(10i+2+ j)3i+1, (14i+2j+1)3i+3i], whichequals [30i2+3i(j+2)+1, (7i+ j)6i+6i]. 
Furthermore, D U ( A+ D )  U ( B  + D )  = [(7i+ j)6i +6i, (7i + j)9i +9i] ,and C + D = 
[(7i+ j)9i+9i+1, (7i+j)9i+3i(3i+1)+9i] = [ (7i+j)9i+9i+1,72i2+i(12+9j)] .  

Since IA U B U C U Dl = rn, for large enough i we have 

pairs must be 
"wasted". This happens in two ways. First, the sum may be too big, as happens for any 
pair of numbers that both exceed C(rn)/2. Second, note that r - s = t - u if and only if 
r + u = t + s .  Thus we obtain a wasted pair for each instance of identical differences. 

Consider a set S that represents everything from 1 to prn2, for some p > 114. We may 
assume that S [ 1 ,  pm2].  Let am = I S n [ I ,  pm2/2]1. All pairs from the ( 1  - a ) m  
numbers above pm2/2  are wasted. The smaller pairs have differences between 1 and 
pm2/2  - 1 ,  yielding wastage when am + ("2m) > pm2/2  - 1. 

Let a b mean that a > b - e for large enough m.  Letting wm2 be the number of 
wasted pairs, we have w 5 max(0, (a2- p ) / 2 )  + ( 1  ~ ) ~ / 2 .- Letting f ( a )  denote this 
lower bound, we have f l ( a )  = - ( 1  - a )  for a2 < p and f f ( a )= 2a - 1 for a2 > p.  The 
first quantity is negative and the second positive, since p > 114. Thus w is minimized at 
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(;)+rnwe show that some of the E ,+419<c(rn)/rn2To prove that 
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