
Uniform Calculus and the Law of Bounded Change

Mark Bridger; Gabriel Stolzenberg

The American Mathematical Monthly, Vol. 106, No. 7. (Aug. - Sep., 1999), pp. 628-635.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28199908%2F09%29106%3A7%3C628%3AUCATLO%3E2.0.CO%3B2-L

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Dec 22 05:33:10 2007

http://links.jstor.org/sici?sici=0002-9890%28199908%2F09%29106%3A7%3C628%3AUCATLO%3E2.0.CO%3B2-L
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


Uniform Calculus and the Law 
of Bounded Change 

Mark Bridger and Gabriel Stolzenberg 

1. INTRODUCTION. In a recent exchange about the role of the mean value 
theorem in the theory of the calculus, T. Tucker notes that "the origin of the 
Mean Value Theorem in the structure of the real numbers" is much too diffi- 
cult for a standard course [6]. He  shows how the increasing function theorem 
(a function with positive derivative is increasing) serves very nicely in place of the 
mean value theorem, and sketches a proof of it from the nested interval property 
of the real number system. 

In support of the mean value theorem, H. Swann recalls its derivation from the 
extreme value theorem (a continuous function on a closed interval has a maximum 
value) via Rolle's theorem and remarks that "such a sequence of arguments reveals 
the charm and power of mathematics, for we prove that a questionable compli- 
cated result must be true if we assume other simpler results that are less 
questionable" [5]. 

We agree with Swann about the charm and power of mathematics and with 
Tucker about the ability of the increasing function theorem to play a role 
traditionally accorded the mean value theorem. In fact, we give several examples 
that support Tucker's claim. But Tucker and Swann work with pointwise continuity 
and differentiability, weak notions that make proving statements like the increas- 
ing function theorem more difficult. On closed finite intervals, uniform continuity 
and differentiability are as easy to verify, and using them as starting points permits 
a natural development of the calculus in which such difficulties do not arise. 

Our treatment of continuity and differentiation is from our forthcoming book, 
A New Course of Analysis, where it is expressed in terms of a theory of real 
numbers based on interval order and arithmetic. We offer no theory of real 
numbers in this article but we use repeatedly the fact that each real number can be 
approximated by rationals to arbitrary accuracy. 

2. UNIFORM CALCULUS. Continuity. Uniform continuity of a one variable 
function f is a condition on its variation, f (y)  - f(x). The condition, written 
+(x, y) + 0 as y - x + 0 for any two-variable function 4, is that for each 
E > 0, there is a 8 > 0 such that l$(x, y)l I E if ly - xl I 8 .  When +(x,y)  = 

U(x, y) - u(x), we also write: U(x, y )  + 4 x 1  as y + x. 

Example. The relationship 

shows that ly" - xnl  InC"-lly - xl on any interval of the form [-C, C ]  and, 
hence, that xi' is uniformly continuous on each finite interval. A proof of pointwise 
continuity could hardly be simpler. 

628 UNIFORM CALCULUS [Monthly 106 



Example. Using p" + q" I( p  + q)" with p = x l / "  and q = ( y  - x ) ' / " ,  we have 

0 I y l / f l  - - ( ~ - x ) ' / " I E< i f O 5 x 1 y  a n d y - ~ I E " .  

It follows that for each positive integer n ,  x l / "  is uniformly continuous on [0,4. 

Proposition 2.1. A composition of uniformly continuous functions is uniformly con-
tinuous. 

Proposition 2.2. A uniformly continuous function f on a finite interval I is bounded. 

Proof: For E > 0, let 6 > 0 be given by uniform continuity. Because I is finite, we 
can find finitely many points such that every p E I is within 6 of at least one of 
them. Hence, f is bounded by E plus the maximum of its values at these finitely 
many points. 

Differentiability. Uniform differentiability of a function f also is a condition on 
its variation: it factors as f ( y )  - f ( x )  = F(x ,  y ) (y  - x) ,  where ~ ( x ,y )  + ~ ( x ,x )  
as y + x. If f is uniformly differentiable, its derivative is the function f ' ( x )  = 

F(x ,  x).  Thus, F(x ,y )  = ( f ( y )- f ( x ) ) / ( y  - x ) ,  for y different from x ,  and 
F(x ,  x )  = f 1 (x ) .  

Because the difference quotient converges to the derivative as y + x ,  the 
derivative is unique on any domain S for which each x in S is approximable to 
arbitrary accuracy by points y in S different from x. 

Example. For all positive integers n ,  using the factorization of y" - xn  and the 
arithmetic of convergence (see Lemma 4.1), it follows that on each finite interval, 
xn  is uniformly differentiable with derivative nx"- ' .  

Example. Because y2 - x2  = ( y  + x ) (y  - x )  and y + x + 2x  on R as y + x, x2  
is uniformly differentiable on [W with derivative 2x. 

Proposition 2.3. I f f  is uniformly differentiable, then f' is uniformly continuous. 

Proof: Because F is symmetric, if x and y are close enough, both f l ( x )  and f l ( y )  
are within E of F(x ,  y )  = F(y ,  x )  and hence within 2.5 of each other. S 

Corollary 2.4. On finite intervals, f' is bounded. 

Proof: Propositions 2.2 and 2.3. 

Proposition 2.5. I f f '  is bounded, then f is uniformly continuous. 

Proot When f' is bounded, so is F(x ,  y),  say by C,  for ly - xl sufficiently small. 
Hence, If(y>- f(x>l ICly -xl  + 0 as y - x + 0. 

Theorem 2.6. (F~~ndamentalTheorem of the Calculus) If g is uniformly continuous 
on [ a ,b] ,then G ( x )  = j,"g(t) dt is uniformly differentiable on [a ,b ]  with G' = g.  

Proof: G ( y )  - G ( x )  equals the integral of g from x to y, which equals y - x 
times a limit of averages of values of g at points in [ x ,y] . (To see this, approximate 
the integral by Riemann sums with equal spacing.) Also, for each E > 0, if ly - xl 
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is small enough, every value of g at a point in [x, y ]  is within E of g(x). But then, 
also, any limit of averages of values of g at points in [x, y ]  is within E of g(x), so 
we are done. 

3. THE ARITHMETIC OF UNIFORM CONTINUITY. The arithmetic of uniform 
continuity is very simple. If both f and g are uniformly continuous, so is f + g. If 
also f and g are bounded, then fg is unifolmly continuous. Finally, if l/f is 
defined and bounded, it too is uniformly continuous. 

These statements can be verified by first relating the variations of the sum, 
product and reciprocal to those f and g. Simple algebra shows that var(f + g )  = 

var(f 1 + var(g),  var(fg) = g(y)var(f  + f (x)var (g)  and var(l/f  = 

-var(f >/(f(x>f(y>>. 
Because each expression is a sum of expressions of the form B(x, y)$(x, y), 

where B(x, y) is bounded and +(x, y) + 0 as y - x -, 0, it suffices to verify that 
each such sum again converges to 0 as y - x -, 0. We omit the simple proof of 
this. 

4. THE ARITHMETIC OF UNIFORM DIFFERENTIABILITY. If f and g are 
uniformly differentiable, derivatives for their arithmetic combinations are given by 
the following rules. 

Sums. f + g is uniformly differentiable with (f + g)' = f '  + g'. 

Products. If f ,  g ,  and their derivatives are bounded, e.g., if their domain is a 
finite interval, then fg is uniformly differentiable with (fg)' = f'g + fg'. 

Reciprocals. If l/f is defined and bounded, and f '  also is bounded, then l/f is 
uniformly differentiable with (l/f )' = -f '/f 2 .  

To prove these assertions, we begin by substituting F(x, Y)(Y- x) and 
G(x, y)(y - x) for var(f )  and var(g) in our expressions for var(f + g), var(fg), and 
var(l/f). For the sum, we get F(x, y) + G(x, y), for the product, g(y)F(x, y) + 
f(x)G(x, y), and for the reciprocal, -F(x, y)/( f(x)f(y)), each multiplied by 
y - x .  

For y = x, these expressions become f '(x) + gl(x), g(x)fl(x) + f(x)gl(x), and 
-fl(x>/f 2 ( ~ > .  

The case of the sum is clear. Both F(x,  y) - f l (x)  and G(x, y) - g'(x) converge 
to 0 as y - x + 0, hence so does the sum. For the product and reciprocal, 
multiplications are involved. The following lemma gives us what we need to deal 
with them. 

Lemma 4.1. Suppose that LL and u are bounded. If U(x, y) + u(x) and V(x, y) + 

U(X) as y +x, then for y - x sufficiently small, U and V are bounded and 
U(x, y)V(x, y) -,~ ~ ( x ) u ( x )as y -,x. 

Proot Write UV - uu = u(V - u) + (U - LL)Vand note that, because LL and V 
are bounded for y - x small enough, each summand converges to 0 as y - x -, 0. 

The next lemma is used to prove Proposition 6.1 about the differentiability of an 
inverse function. 
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Lemma 4.2. Suppose that l / u  is defined and bounded. If U ( x ,  y )  -+ u ( x ) ,  then for 
y - x suficiently small, 1 / U  is defined and bounded, and 1 / U ( x ,  y )  + l / u ( x )  as 
y + x .  

Proof: We prove only the second part. Write l / u  - 1 / U  = (U - u ) / u U  and note 
that l / u U  is bounded for y - x sufficiently small. rn 

For the product rule, we reason as follows. By assumption, f is bounded and 
G ( x ,  y )  -, g ' ( x )  as y + x.  Thus, f ( x ) G ( x ,  y )  + f ( x ) g ' ( x )  as y + x.  Because 
limits add, it suffices to prove that g ( y ) F ( x ,  y )  -, g ( x ) f l ( x )as y + x.  But, also by 
assumption, F ( x , y )  + f ' ( x )  as y + x ,  and f' and g are bounded. Hence, if 
g ( y )  + g ( x ) as y + x ,  we can apply Lemma 4.1. It therefore suffices to note that 
g is uniformly continuous because g' is bounded. 

Similarly, for the reciprocal rule, f is uniformly continuous because f '  is 
bounded, and because l / f  is bounded, it too is uniformly continuous. Hence, 
l / f ( y )  + l / f ( x )  as y + x. Multiplying by l / f ( x ) ,  we see that l / f ( x ) f ( y )+ 

l / f  2 ( ~ )  as y + x. Because - F ( x ,  y )  -, - f ' ( x )  as y -, x ,  and the limit functions 
l / f  and -f '  are bounded, the product converges to the product by Lemma 4.1. 

5. THE CHAIN RULE 

Proposition 5.1. I f f  and g are uniformly differentiable, and i f f '  and g' are bounded, 
then f ( g )  is uniformly differentiable with derivative f1 (g )g ' .  

Proof: Because f ( g ( y ) )- f ( g ( x ) ) = F ( g ( x ) , g ( y ) ) ( g ( y )- g ( x ) ) ,  which in turn 
equals F ( g ( x ) ,  g ( y ) ) G ( x ,  y ) ( y  - x ) ,  the candidate for the derivative of f ( g )  is 
indeed f1 (g )g ' .  Because g' is bounded, g is uniformly continuous. Hence, 
F ( g ( x ) , g ( y ) )-,f l ( g ( x ) )as y -, x.  Because G ( x ,  y )  -, g ' ( x ) as y -, x and f ' ( g )  is 
bounded, an application of Lemma 4.1 gives us the desired result. rn 

6. DIFFERENTIABILITY OF THE INVERSE 

Proposition 6.1. If h is a uniformly continuous inverse for f ,  and if l / f '  is defined 
and bounded, then h is uniformly differentiable with h' = l / f l ( h ) .  

Proof: Because h is an inverse for f ,  we can factor the variation of the identity 
function as 

Y - x  = f ( h ( y ) )  - f ( h ( x ) )  = F ( h ( x ) , h ( y ) ) ( h ( y )  - h ( x ) ) .  

This shows that 1 / F ( h ( x ) ,  h ( y ) )  is equal to the difference quotient for h when 
ly - xl > 0. Because h is uniformly continuous, F ( h ( x ) ,  h ( y ) )  -, f l ( h ( x ) )as y - x 
-, 0. Therefore, because l / f 1 ( h ( x ) )is defined and bounded, we can apply Lemma 
4.2 to conclude that 1 / F ( h ( x ) ,  h ( y ) )  + l / f 1 ( h ( x ) )as y -, x.  rn 

7. THE LAW OF BOUNDED CHANGE 

Theorem 7.1. I f f  is uniformly differentiable and A I f' IB on [ a ,  b ] ,  then A ( b  - a )  
I f ( b )  - f ( a )  IB ( b  - a). 

This is the law of bounded change. It says that bounds for the derivative are 
bounds for the difference quotient. Notice that the increasing function theorem is 
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just the law of bounded change for A = 0 (and we don't care about B )  and the law 
of bounded change is the increasing function theorem applied to the functions 
Bx - f ( x )  and f ( x )  -Ax. 

Proof It suffices to prove that for all E > 0, the conclusion holds with A and B 
replaced by A - E and B + E .  The justification for this is the general truth that if 
p < q + E for all E > 0, then p I q. That this'holds for reals follows by rational 
approximation from the fact that it holds for rationals. 

Since F(u,u) + f ' ( u )  as u + u ,  for each E > 0 there is a S > 0 such that 
f ' (u)  - E <F(u ,u )  < ~ ' ( L L )+ E f o r 0  I u - u < 8. But A 5 f 1 ( u )I B,so  f (u)  -
~ ( L L )= F(LL,u)(u - u )  lies between ( A  - E ) ( U  - L L )  and ( B  + E ) ( V  - u).  

Hence, if we express f (b )  - f (a)  as a telescoping sum of n differences f (u i )  -
f (u,- , ) ,  where u ,  = a and each u,  - L L , _ ,  = ( b  - a ) / n  < 6, we have that 
( A  - ~ ) ( b- a)  I f (b )  - f (a)  I ( B  + ~ ) ( b- a). 

We now draw several useful and easy consequences of the law of bounded 
change. 

Corollary 7.2. f is constant on any interval on which f' = 0. 

Proof This is just the law of bounded change with A and B equal to 0. 

Is there any simpler or essentially different way to prove this deceptively obvious-
looking fact? 

Corollary 7.3. f ( x )  - f (a)  = /;' f ' ( t )  dt. 

Pro05 By the fundamental theorem of the calculus, the two sides of the equation 
have the same derivative. Hence, by Corollary 7.2, they differ by a constant. But 
they agree at x = a, so they agree everywhere. 

Alternatively, we can observe that in the proof of the law of bounded change, we in 
effect approximate f ( x )  - f (a)  to arbitrary accuracy by Riemann sums for the 
integral of f' from a to x. Because these sums also approximate the integral, the 
two must be equal. 

Corollary 7.4. I f f '  2 A > 0 on [ a ,bl and f (h (u ) )= u for all u in [ f (a ) ,f (b) l ,  then 
h is ~lniformlycontinuous. 

Proof By the law of bounded change, if h(u )  < h(u),  then A(h(u)  - h(u))I 
f(h(u))  - f (h(u) )  = u - u. So 0 < h(u)  - ~ ( L L )4 (u  - u ) / A  -,0 as u - u -,0. 

By the inverse function theorem, whenever f' 2 A > 0 on [a ,b] ,  there is a 
function 11 as in the statement of Corollary 7.4. 

Corollary 7.5. If A s f '  I B on [a ,b] ,then 
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Proof: We apply the law of bounded change on [ x ,y] .  Because the values of f' are 
in [ A ,B ] ,  so is the difference quotient ( f ( y )- f ( x ) ) / ( y  - x ) ,  which therefore 
cannot differ from any value of f' by more than B -A .  

Corollary 7.6. I f f  is ~lniformlydifferentiable on all sujjiciently small subintervals of an 
interval I and i f f '  is uniformly continuous on.1, then f is uniformly differentiable on I. 

Proot For E > 0, the values of f' lie between f ' ( x )  - E and f l ( x )  + E on each 
sufficiently small [ x ,y ]  in I. Therefore, if f ( y )  - f ( x )  = F(x ,  y)(y - x) ,  Corollary 
7.5 shows that I F(x ,y )  - f ' ( x )  1 5 2 E for (y  - x 1 sufficiently small. rn 

The next consequence of the law of bounded change is needed for L'H6pital's 
Rule. In it, A and B are constants, and f and g are uniformly differentiable on 
[a ,bl. 

Corollary 7.7. (Generalized Law of Bounded Change) If Ag' 5 f' 5 Bg' on [ a ,b ] ,  
then A [ g ( b )- g(a)l 4 f ( b )  - f ( a )  4 B [ g ( b )- g(a)l. 

Proof: Apply the increasing function theorem to Bg - f and f -Ag, and rear-
range the resulting inequalities. 1 

8. APPLICATION: L'HOPITAL'S RULE. We now present a few examples in 
support of Tucker's contention that the increasing function theorem serves nicely 
to prove major theorems of the calculus that traditionally are derived from the 
mean value theorem [6].We begin with L'H6pita17s Rule; see also [2].There are 
two cases. In both, we assume that f and g are defined on a semi-infinite interval 
[c, m) and are uniformly differentiable on each finite subinterval. We assume also 
that g and g' are positive. 

Proposition 8.1. If f ( x )  and g ( x )  -, 0 and f 1 ( x ) / g ' ( x )-,L as x -,m, then also 
f ( x ) / g ( x )  -+ L as x -+ a. 

Proof: For E > 0, L - E I f ' /gl  I L + E on [ p ,  00) if p is large enough. In that 
case, if p 5 x Iy, the generalized law of bounded change ensures that 

Because weak inequalities are preserved in the limit, if we let y + a and divide by 
g ( x )  > 0, we obtain L - E I f ( x ) / g ( x )  I L + E for all x 2 p .  1 

In the second case of L'H6pita17s Rule, it is common to assume also that 
f ( x )  -,a,but there is no need to do so. 

Proposition 8.2. If g ( x )  -+ c~ and f ' ( x ) / g l ( x )  -,L as x + m, then also f ( x ) / g ( x )  
+ L a s x  -+ m. 

Here too, the generalized law of bounded change is used only once. We note 
that if f ' ( x ) / g l ( x )  lies between L - ~ / 2and L + ~ / 2for x 2 p, then so does 
( f ( x )- f ( p ) ) / ( g ( x )  - g(p)) .  But to complete the argument, one has to be more 
artful than in the first case.' 
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9. APPLICATION: DIFFERENTIATION UNDER THE INTEGRAL SIGN 

Definition 9.1. A two-variable function f is uniformly continuous if for each E > 0, 
there is a 6 > 0 such that l f (x l ,  y ' )  - f ( x ,  y)l IE whenever both Ix' - xl and 
ly' - y 1 are smaller than 6. 

Remark 9.2. If the second coordinates in Definition 9.1 are equal, then the 
condition that guarantees that If(xl, y )  - f ( x ,  y)l I E involves only the first coor- 
dinates: Ix' - xl 5 6. That is, for each E > 0, one 6 > 0 works for all horizontal 
lines y = constant. This simple observation is a key to our proof of Theorem 9.3. 

Theorem 9.3. (Differentiation Under the Integral Sign) Let f be defined on Q = 

[a ,  b ]  x [c ,  dl and uniformly continuous on {a} X [c ,  dl. I f f  is uniformly differen- 
tiable on each [a ,  b ]  x { y }  and its partial deriuatiue f, is uniformly continuous on Q,  
then f is uniformly continuous on Q and the integral o f f ,  over [c ,  dl is a derivative for 
the integral o f f  over [c ,  dl. 

Pro08 We assume the uniform continuity of f on Q. It can be be proved fairly 
easily using Corollary 7.3 but we prefer to focus here on the second part of 
the argument, which employs a less familiar application of the law of bounded 
change. Integrating f ( y ,  t )  - f ( x ,  t )  = F(x ,  y, t ) ( y  - x )  over [c ,  dl, we see that to 
complete the proof, it suffices to demonstrate that the integral of F(x ,  y, t )  -
f,(x, t )  over [c ,  dl converges to 0 as y - x - 0. To this end, it suffices to show that 
IF(x, y, t )  - f,(x, t)l can be made less than any E > 0 by making ly - xl less than 
some 6 > 0, independent of t .  

It follows from Corollary 7.5 that 1 F (x ,  y, t )  - f,(x, t )  1 is bounded for each t 
by any bound for If,(u, t )  - f,(u, t ) l ,  for all u and u in [ x ,  y] .  By Remark 9.2, for 
any E > 0, there is a 6 > 0 such that if Ix -yl  4 6,  then, for all t in [c ,  dl, 
If,(v, t )  - f,(u, t)l I E for all u and v in [ x ,  y] .  This is precisely what we need. rn 

Proposition 9.3 also follows easily from reversal of order of integration and 
Corollary 7.3. Because reversal of order of integration is a simple consequence of 
the existence of the double integral of a uniformly continuous function, this 
provides a proof of Proposition 9.3 that uses the law of bounded change in a more 
familiar way. 

10. HIGHER DIMENSIONS. In higher dimensions, there is no obvious counter- 
part to the increasing function theorem, and the mean value theorem is false even 
for a mapping from an interval to Ft2. Yet the law of bounded change generalizes 
almost without alteration if we regard convex sets as higher dimensional counter- 
parts to intervals and read the proof as showing that if f is defined on an interval 
[a ,  b ] ,  then any closed interval that contains { f l ( u ) ( b- a ) :  u E [ a ,  b ] }  also con- 
tains f (b )  - f(a).  

Definition 10.1. A map f from a subset U of one normed linear space X to 
another Y is ~lniformly differentiable if there is a map Df from U to the set of 
bounded linear transformations from X to Y such that for each E > 0, I l  f ( q )  -
f ( p )  - Df(p ) (q  - p ) l l ~5 ~ l l q-pllx if Ilq -pllx is sufficiently small. 

Proposition 10.2. Using the notation in Definition 10.1, i f  U is convex then, for each 
p and q in U ,  f ( q )  - f ( p )  belongs to evely convex subset of Y that contains 
D ~ ( u ) ( ~P )  for all u in U. Hence, i f  each Df(u)  :X Y is bounded by K on the - + 

unit sphere of X ,  then I l  f ( q >- f(p>lly5 K11q - pllx. 
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Proot If p and q are in U ,  so is the line segment joining them. Hence, using a 
telescoping sum as in the proof of Theorem 7.1 and approximating each summand 
by the value of Df at a point on the segment, applied to ( q  -p) /n ,  we can 
approximate f (q )  - f ( p )  to arbitrary accuracy by an average of finitely many 
values of Df at points along the segment, applied to q - p. W 

11. AFTERWORD. We believe that this development, which is in the construc- 
tivist manner of Errett Bishop and L. E. J. Brouwer [4], produces proofs that are 
shorter and more transparent than those encountered in classical treatments. The 
idea of working with uniform rather than pointwise notions is a hallmark of the 
constructivist tradition. 

For the one-dimensional case, our definition of differentiable function is a 
uniform version of a definition of CarathCodory. See [3] and the references 
therein. For a definition of this kind in higher dimensions, see [I]. 
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