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The Answer is 2" n! What's the Question? 

Gary Gordon 

1. INTRODUCTION. Allison, Cory, Heidi, and Zach are relaxing in the math 
coffee room. Allison says, "Did you see Jeopardy last night? I'm always excited 
when they have Mathematics as a category, but their math questions are always so 
lame!" Cory and Zach agree with Allison. Heidi says "Why don't they ever have an 
answer like 2"n!? Then the contestants would have to find a problem with 2"n! as 
the answer. That might not be so easy, even for Alex." 

Cory says "I've got it: What do you get when you multiply 2" and n!?" 
Ignoring Cory's correct but uninteresting solution, Allison continues, "Since 

we're mathematicians, our goal should be to find really good questions, using all 
sorts of math. We should each find our own question, one that uses our own field. 
Remember, we're trying to find good questions having 2"n! as the answer." 

The rest of this paper is devoted to the approaches taken by these four 
(fictitious, but aptly named) mathematicians. These approaches are from three 
different fields: algebra, geometry and combinatorics. This allows us to see the 
same problem from four different viewpoints, with each successive explanation 
encompassing the previous ones. 

The algebraic and geometric approaches given here are well known, though 
perhaps not as widely known as they should be. The combinatorial approach is 
recent, incorporating a graph theory algorithm to produce the desired connections 
among these viewpoints. 

In the hope of making this note more readable, the proofs are frequently 
sketched broadly. We hope enough details remain for the interested reader to fill 
in any missing steps (or look them up). 

2. ALLISON'S TURN. Allison's specialty is algebra; she decides to find a group 
with 2"n! elements. She needn't look far; the full symmetry group of an n-dimen-
sional hypercube will do. There are n2 mirror symmetry hyperplanes for an 
n-dimensional hypercube. One way to see this is to place the 2" vertices of the 
hypercube at the points ( f  1,.. . , f 1). Then the reflections of the hypercube 
occur in the hyperplanes whose equations are: 

xi= 0 (the n hyperplanes), 

where 1 Ii < j 4 n. See Figure 1for a picture of the cube and its nine planes of 
reflection. In this figure, xi= 0 (for 1 I i I 3) corresponds to a plane that slices 
through the middle of four faces of the cube, while xi= x, and xi= -xj (i # j )  
correspond to planes that contain the diagonals of two opposite faces and two 
edges of the cube. 

636 THE ANSWER IS 2" . n ! WHAT'S THE QUESTION? [Monthly 106 



Figure 1. A cube and its planes of symmetry. 

Let H, denote the n-dimensional hypercube and let G, be its symmetry group. 
Allison needs to show there are precisely 2"n! elements in G,. She decides to give 
an inductive argument. When n = 1, the hypercube is just a line segment, which 
has symmetry group Z,.  In general, H, has 2n facets (faces of dimension n - 1, 
each of which is the hypercube H,,-,). Allison constructs an arbitrary symmetry of 
H,, as follows: 

1. Choose one of the 2n facets of H, and move the hypercube so that this facet 
is on the bottom; the bottom of the hypercube is the facet that meets the 
x,-axis at the point (0, . . . ,0 ,  -1). 

2. Use an element of G,_, as a symmetry of this bottom face; in general, this 
symmetry permutes the other facets of H,. 

In 3 dimensions, this corresponds to picking one of the 6 faces of the cube for 
the bottom, then using one of the 8 symmetries of the square on this bottom face. 
This gives 48 symmetries, only 24 of which can be realized by rigid motions. The 
remaining symmetries are either reflections (there are 9, as we have already seen) 
or rotaiy reflections, i.e., reflections followed by rotations (there are evidently 15 of 
these). It is an interesting exercise to find explicit descriptions of these 15 rotary 
reflections for the cube. 

Every symmetry of H, can be obtained in this manner, since any symmetry must 
carry facets to facets. Then IG, 1 = 2n lG,_, 1 ,  which, together with the initial 
condition \ G I (= 2, gives (G, I = 2"n! 

Allison's algebraic solution. Let G, be the symmetry group of an n-dimensional 
hypercube. Then the order of G, equals 2"n! 

This approach gives us our answer in one way, but gives us very little informa-
tion about the structure of the group G,. We investigate the group in a bit more 
detail in the concluding section. 

3. HEIDI'S TURN. Hyperplane arrangements form the background for the follow-
ing classic problem, a favorite in mathematics contests: 

What is the largest number of regions produced when n lines are drawn in the 
plane? 



This problem is also useful when introducing mathematical induction. The 
3-dimensional version appeared as MONTHLYProblem E554 [a], where J. L. 
Woodbridge of Philadelphia asked: 

Show that n cuts can divide a cheese into as many as (n + l)(n2 - n + 6)/6 
pieces. 

Both of these questions are answered by a general formula discovered by L. 
Schlafli (published posthumously in 1901): 

The largest number of regions produced when n hyperplanes are drawn in 
d-dimensional space equals 

Counting the regions of various hyperplane arrangements is the beginning of a 
beautiful subject, with deep ties to algebra, topology, and combinatorics. A classic 
reference is [7]. Heidi has studied hyperplane arrangements and thinks she can use 
them to construct a good question. Since the algebraic approach has a strong 
geometric flavor, her first solution is to copy Allison's solution, without using 
groups. Recall that Allison used hyperplanes to understand the group G,,. If Heidi 
simply uses the same collection of hyperplanes Allison used (without even men-
tioning the hypercube), she will get a dissection of space into open n-dimensional 
regions. How many regions are produced by this hyperplane arrangement? 

Thus, Heidi is concerned with counting the regions of the hyperplane arrange-
ment whose equations are x,= 0, xi= xi,and xi= -xi Heidi needs to show that 
the number of regions is 2"n!. 

What do these regions look like? Heidi finds it is easier to imagine the regions 
by intersecting them with a cube, as in Figure 1.Then a typical region is formed as 
follows: Let 0 = (0,0,O) be the center of the cube, let P, = (1,0,O) be the center 
of a face, let P, = (1,1,O) be the center of an edge adjacent to this face, and 
finally let P, = (1,1,1) be a vertex adjacent to this edge. Then the region is the 
tetrahedron whose vertices are the four points 0,PI,P,, and P,. There 6 choices 
for P,, 4 choices for P,, and 2 choices for P,, giving us 48 regions. 

In general, Heidi produces a region by picking the center of the hypercube, then 
picking the center of one of its 2n facets, then picking one of the 2(n - 1) faces (of 
dimension n - 2) of the chosen facet, and so on. At stage k, she chooses the 
center of one of the 2(n - k)  facets surrounding an n - k-dimensional face of the 
hyperplane. The n + 1points produced are the vertices of a simplex; this simplex 
is the intersection of a region of the hyperplane arrangement with the hypercube. 
See [2, 57.61 for more on this approach. 

The number of regions of the arrangement is just 2n .2(n - 1) ...4.2 = 2"n!, 
so Heidi proudly announces 

Heidi's hyperplane solution. Let A ,  be the hyperplane arrangement given above. 
Then A,, decomposes space into 2nn! regions of dimension n. 

Heidi also wants to relate her approach to Allison's approach. She does so by 
exhibiting a one-to-one correspondence between the regions of the arrangement 
and the elements of the symmetry group G,. To see this correspondence, first note 
that the symmetry group G, acts on the regions of the arrangement. Now given any 
pair of regions A and B in her hyperplane arrangement, there is a unique element 
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cr,:, E G,, with UA,JA)  = B (G,, acts transitively on the arrangement). The 
existence of a,,, follows because the regions themselves have no non-trivial 
symmetries-they are completely asymmetric. Then labeling an arbitrary region of 
the arrangement by the identity I of the group, Heidi gets her bijective correspon- 
dence between the regions A,, A,, . . . and the elements a,,A,,a,,A 2 , .. . Heidi has 
constructed a portion of the Cayley graph of Gn-the arrangement itself is 
equivalent to the geometric dual of the Cayley graph. See [2] for more on Cayley 
graphs. 

4. ZACH'S TURN. If M is any r X k matrix, then the zonotope Z(M) is a 
polytope in 9 "  given by 

where c i  is the it" column of M. Since the c i  are just an arbitrary collection of 
vectors in 9 " ,  the study of zonotopes is very natural in geometry or linear algebra. 
It is also fun to build 3-dimensional models of them using a good kit; Polydrons 
and Zometools are both good choices. 

The hypercube H,, is a product of n intervals: H,, = [ - 1,1] x ... X [ - 1,1]. 
Zonotopes are projections of hypercubes; the definition shows how each interval 
[ - 1,1] appears. The name zonotope arises from the fact that the facets determine 
'zones' in space. Zonotopes are an important and well-studied class of polytopes 
with applications to oriented matroids, tiling problems and more. See [I], [2], and 
[14] for interesting connections among zonotopes, groups, geometry and oriented 
matroids. 

Zach knows zonotopes; his idea is to find a class of zonotopes in which 2"n! 
counts something. An obvious choice for a matrix whose columns generate the 
zonotope (given the first two solutions) is the matrix of normal vectors of the 
hyperplanes considered previously; x, = 0, xi = xj, xi = -x,. For n = 3, a picture 
of the zonotope appears at the bottom of Figure 2. This polytope is a rhombitrun- 
cated cuboctahedron, one of the Archimedean solids. This zonotope arises as a 
truncation of a cube; the vertices of the cube correspond to the hexagons of the 
zonotope, the edges of the cube correspond to the squares and the faces (squares) 
of the cube correspond to the octagons. See Figure 2 for an illustration of how the 
truncation process produces the zonotope. 

Zach constructs the n x n2 matrix M,, whose column vectors are normal to the 
hyperplanes (yes, the same hyperplanes Heidi used), and he calls the associated 
zonotope Z(M,). In general, order the columns of Mn as in the following example: 

Zach now just counts the number of vertices of the zonotope Z(M,,). Superim- 
posing a picture of Z(M,) and the hyperplane arrangement A,, Zach realizes that 
there is a one-to-one correspondence between the vertices of Z(MJ and the 
regions of the arrangement (see Figure 3). Note that each vertex of Z(M,) appears 
in the center of a region of the arrangement. Generalizing from 3-dimensions to 
n-dimensions (frequently dangerous but also frequently productive), he guesses 
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Figure 2. Truncating a cube to produce a zonotope. 

Figure 3. A zonotope and its planes of symmetry. 

Zach's zonotope solution. The zonotope Z(Mn) has 2"n! vertices. 
To see why this is true in general, Zach uses a little linear algebra. Here is a 

sketch of his ideas: First, he realizes that if the vector v in 9"is a vertex of the 
zonotope, then v = Mnp, where p is a column vector, each of whose n2 entries 
equals 1 or -1. This follows from remembering that Z(Mn) = C;:, Aici, where 
- 1 IA, I 1; a vertex of Z(Mn) can ensue only when hi = 1 or -1.There are 2"' 
such f1vectors p, representing the vertices of an n2-dimensional hypercube, the 
hypercube that is projected to.Z(M,). 
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Each of these 2"' vertices of the hypercube produces a vector v that is now a 
possible vertex of Z(M,). Which v are the zonotope vertices? Zach figures out that 
any vector whose entries are some permutation of { la , ,  3a,, 5a,, . . . ,(2n - l)an}, 
where each a ,  equals 1or - 1, arises as Mnp  for some vector of * 1's. 

Why do the vertices look like this? Every row of the matrix M,, has exactly 
2n - 1 non-zero entries. Thus any coordinate of Mnp  is bounded above by 2n - 1 
and below by - (2n - 1). Once p has been chosen to make a certain coordinate of 
M,,p equal to k(2n - 11, the next largest (or smallest) coordinate value possible is 
+(2n - 3). The argument proceeds inductively; see [3] for a complete proof. 

Conversely, each such v must be a vertex of the zonotope, since no such vector 
is a convex combination of other points in Z(M,,). In particular, the matrix product 
Mnp can never produce any entry larger than 2n - 1 in absolute value. Thus, if 
+(2n - 1) appears as an entry in v, then v could not be a non-trivial convex 
combination of other vertices of the zonotope. Finally, no other v is a vertex of 
Z(Mn), since no other v contains *(2n - 1) as an entry. 

The key for us is simply the following: since there are n! permutations of 
[I,3,. . . ,(2n - I)] and 2" possible ways to assign + 1 to each entry, Zach has 
produced 2"n!, as required. 

5. CORY'S TURN. Zach did his job, but he ducked an important question in 
considering the matrix products M, p: 

Question 1. Of the 2"' possible sign vectors p, which ones produce the 2"n! 
vertices of the zonotope Z(M,)? 

The job of tying all the pieces together falls to Cory, our combinatorialist. Cory 
realizes that finding a question whose answer is 2'n! is not much of a challenge; he 
could just find all permutations of [ $ 1, $ 3, . . . , $ (2n - I)] (as in Section 4) and 
be done. This involves combinatorics only superficially, however; he seeks a deeper 
connection, as do we. 

The matrix M, that Zach used reminds Cory of incidence matrices. Remember 
that every column of M, has either exactly one non-zero entry (which equals 1) or 
exactly two non-zero entries (which either are both equal to 1 or have one entry 
equal to 1and the other equal to - 1). Cory decides to create a graph that has this 
matrix as its vertex-edge incidence matrix. Here's how the graph is defined: First, 
he labels n vertices of the graph he (modestly) calls C, with the numbers 1, .  . . ,n 
(corresponding to the rows of the matrix). Then the edges of the graph are filled in 
as follows: 

1. Put a loop at every vertex (corresponding to the columns having one 1 and 
n - 1 O's), 

2. Put an edge between every pair of vertices (corresponding to the columns 
having two 1's and n - 2 O's), 

3. 	For each i and j such that 1 5 i < j 5 n, put a directed edge pointing from 
vertex i to vertex j (corresponding to the column having a 1 in position t ,  
a -1in position j and n - 2 0's). 

Technically, C, is a mixed graph because it mixes directed and undirected edges. 
Cory has talked to Zach and knows about the connection between the matrix 

M, and the zonotope Z(Mn). In order to connect the graph C,, with the zonotope, 
he needs to interpret M,,p, where p = [e , , . . . ,e,'lT and each ei = $1. He  decides 
to use the entries of p to label some of the edges of C,, with $1. If column k of 
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M, corresponds to an undirected edge in C,, Cory labels this edge with e,, which 
equals either 1or - 1. Similarly, if column k corresponds to a loop in C,, he labels 
the loop with e,. Finally, if column k of M, corresponds to a directed edge from 
vertex i to vertex j, he leaves this directed edge unchanged if e, = 1 and he 
reverses the direction if e, = - 1. 

This process produces a signed, oriented mixed graph C,(p). See Figure 4 for an 
example with M, and the vector p = [I,  - 1y1, - 1,1,1, - 1,1, -1IT.To under- 
stand how this p produces the signs and arrows shown, recall the order of the 

Figure 4. Signed mixed graph G,(p). 

normal vectors appearing as the columns of M,: The first three columns corre- 
spond to the loops at vertices 1, 2, and 3. Columns 4, 6, and 8 correspond to the 
(undirected) edges joining vertices 1 and 2, 1 and 3, and 2 and 3, respectively. 
Thus, for example, since e, = - 1, the edge joining vertices 1 and 2 is signed with 
-1.Columns 5,  7, and 9 correspond to the directed edges joining vertices 1and 2, 
1 and 3, and 2 and 3, respectively. Thus, for example, since e, = -1 in the 
example, the edge directed from vertex 1 to vertex 3 is reversed. 

There is a one-to-one correspondence between signed, oriented mixed graphs 
and the sign vectors p. It is interesting to note that these sign vectors also arise 
naturally in the context of the hyperplane arrangements-Heidi's hyperplane 
approach to the problem. For any region R in the hyperplane arrangement, let u 
be a point in R. Thinking of u as a vector, compute the usual inner product of u 
with each of the n2 normal vectors. Recording only whether these inner products 
are positive or negative produces a sign vector of length n2;  this simply records 
which side of each hyperplane the point u lies. Among all possible 2"' potential 
sign vectors that could arise in this way, it turns out that only 2"n! do arise. These 
are precisely the sign vectors that produce vertices of the associated zonotope. 

As anyone who has ever put up wallpaper knows, it is easy to move a bubble 
beneath the paper from place to place, but it's hard to get rid of the bubble. Cory 
has now shifted the problem of determining the 2"n! vertices of the zonotope (or 
the regions of the hyperplane arrangement) to a graph theory problem. 

Question 2. Of the 2"? possible oriented, signed mixed graphs C,(p), which ones 
produce the 2"n! vertices of the zonotope Z(M,,)? 

Cory's goal is to separate the two factors 2" and n! by having each one count a 
particular action. Now there are two aspects to C,,(p): the orientation of the 
directed edges and the signing of the undirected edges. Cory decides to call a sign 
vector p good if it corresponds to a vertex of the zonotope. Cory notices a few 
things about these good p: First, the orientation of C,(p) is acyclic when p is good. 
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This means that the vertices can be linearly ordered u,, u,, . . . , u,, so that every 
directed edge adjacent to u, points away from u,, every directed edge adjacent to 
u, (except for the edge from u, to u,) points away from u,, and so on. In the 
language of tournaments, the directed edges of C,,(p)form a transitive tournament 
-if a beats b and b beats c, then a beats c. There are n! acyclic 
orientations-Cory is half-way home. 

The second important point Cory realizes has to do with the signs on the 
undirected edges. When p is good, these signs can be obtained 'vertex by vertex' as 
follows: Assume u,, u,, . . . ,u,, is the linear order and let b = [b,, . . . ,b,,I7 be one 
of the 2" vectors of 1's and - 1's. If b, = 1, then he signs with a 1 all undirected 
edges incident to u ,  (including the loop); if b, = -1, then all undirected edges 
(including the loop) incident to u,, are signed with a - 1. Now Cory removes u,  or 
u,, from the list (depending on whether b,  = 1 or - I) ,  giving a new list of n - 1 
vertices. He then repeats the process for b,: if b, = 1, then he signs with a 1 all 
undirected edges incident to the first vertex on the new list (u, when b, = -1and 
u, when b, = 1) (including the loop) that have not previously been signed; if 
b, = - 1, then he signs with a -1 all undirected edges (including the loop) 
incident to the last vertex on the list (u, when b, = 1 and u , , ~ ,when b, = - 1) 
that have not previously been signed. The process continues until all of the signs 
b, - b,, have been processed. Since there are 2" sign vectors b and each one gives 
a unique signing, Cory has the 2" factor directly visible, too. 

For example, if b = [I,  - 1, 1IT and u, = 3, u, = 1, and u, = 2, he first paints 
the edges adjacent to vertex 3 with l's, then paints the previously unsigned edges 
adjacent to 2 with - 1's and finally paints the remaining unsigned edges adjacent 
to 1 with a 1; the only edge painted in this last step is the loop at vertex 1. See 
Figure 4. 

Cory gives an inductive argument to show why this works; you can see it in [3]. 
The key for us is that this procedure for producing an oriented signed graph gives 
a direct link to our 2"n! problem family: Since there are n! orderings of the n 
vertices (to produce an acyclic orientation) and there are 2" sign vectors b of 
length n, Cory immediately gets the answer of 2"n!. 

Cory's combinatorial solution. There are precisely 2"n! oriented, signed mixed 
graphs C,(p) corresponding to good sign vectors p. 

6. REBUTTAL. Allison, Heidi, Zach, and Cory meet in the coffee room to share 
their work. Allison sees a connection between the structure of the group GI, and 
the ubiquitous 2"n! 

Allison's turn. Allison knows that the symmetry group G,, of a hypercube decom-
poses as a semi-direct product: 

G,, = Z;XI S,,.  

She views the symmetry group of a hypercube as follows: 

First label the 2n facets of the hypercube by the symbols 1,I*, 2,2*, . . . ,n, n*, 
where the symbol i represents the facet contained in the hyperplane xi= 1 
and i* represents the facet contained in the hyperplane xi= - 1. 
Choose a vertex u of the hypercube and record the ordered list of n facets 
incident to u. The starting point for the list can be determined uniquely by 
choosing the top or bottom facet first (whichever is incident to u) and fixing 
an orientation in space: 
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Then an arbitrary symmetry of the hypercube can be broken down into two 
steps: First choose a permutation of the labels around the vertex u, then map 
u to some other vertex u'. 

Allison explains to her colleagues: "The first step in this procedure can be 
accomplished by composing certain reflections through u (the collection of all 
reflections through u generates the symmetric group S,), while the second step 
amounts to choosing an element from the normal subgroup Z;to move from u to 
u' (accomplished by conjugating the permutation by the appropriate element of Z;, 
which is generated by the reflections perpendicular to the coordinate axes). Hey! Is 
anyone still awake?" 

Cory's turn. Cory sees that the graph algorithm that produces the good sign vector 
p does (to a graph) more or less the same thing Allison just did (to the group G,). 
To understand how the correspondence works, Cory reminds his colleagues that he 
first chooses an acyclic orientation of C,,, resulting in a permutation of the n 
vertices (which corresponds to the permutation of the n facets around the vertex 
u), then he picks a sign vector b of length n (which corresponds to mapping the 
vertex u in the hypercube to some other vertex). This gives a map of the 2"n! 
elements of G, to the collection of all C,(p) that are formed from good p's. 

Heidi adds, "It's really interesting how the four approaches used different areas 
of mathematics, but are so closely related. Let's send our solutions to Jeopardy!" 

7. CONCLUDING REMARKS. The connections between hyperplane arrange-
ments, zonotopes, and symmetry groups is explored in [2]. Further interpretations 
are examined in [S]. The sign vectors p considered here are maximal covectors in 
an associated oriented matroid [I]. The further connection with acyclic orienta-
tions of ordinary graphs is due to Curtis Greene [4], while the extension to mixed 
graphs appears in [3]. 

Signed graphs also provide a good way to understand the combinatorics of 
hyperplane arrangements. Tom Zaslavsky has developed a substantial theory for 
these combinatorial objects. See [I l l ,  [12], or [13] for a sample of this work. Many 
of his results generalize to other hyperplane arrangements. Zaslavsky has also 
considered hyperplane arrangements from a matroidal viewpoint. A very readable 
account appears in [lo]. 

Many of the arguments given here can be rephrased using matrix groups; the 
reflections in the group G, are easily represented by matrices. See [2] for more 
details on using linear algebra in this way. 
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