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Conditional Convergence of Infinite Products 


William F. Trench 

In this article we revisit the classical subject of infinite products. For standard 
definitions and theorems on this subject see [I] or almost any textbook on complex 
analysis. We will restate parts of this material required to set the stage for our 
results, as follows. 

The infinite product P = n X ( l+ a,,) of complex numbers is said to converge if 
there is an integer N such that 1 + a, f 0 for n 2 N and lim,,,nfi,=, (1 + a,,) 
is finite and nonzero. This occurs if and only if the series C;",,Nlog(l + a,,,) 
converges. 

We say that P converges absolutely if n"(1 + la,, 1) converges. If P converges 
absolutely then P converges, but the converse is false. The following theorem 
[I, p. 2231 settles the question of absolute convergence of infinite products. 

Theorem 1. The infinite product n"(1 + a,,) converges absolutely if and only if 
Cs:la,,I < m. 

If P converges but n"(1 + la,,l) does not, then we say that P converges 
conditionally. Conditional convergence of does not imply conditional conver- 
gence of P. The following theorem [I,  p. 2251 seems to be the only general result 
along these lines, at least in the textbook literature. 

Theorem 2. If C" la,, l 2  < m then Ya , ,  and n"(1  + a,,) converge or diverge together. 

Here we offer some other results concerning convergence of infinite products. 
Because of Theorem 1, these results are of interest only in the case where 
Cxla,, /= m. 

Theorem 3. If there is a sequence {r,} such that 

lim r,, = 1 
I,'" 

and 

then n"(1 + a,,) converges. 

Proof: Let g,, = r,,(l + a,,) - r,,+,. Then 

from (2), so lim ,,,, g,, = ,,,, and therefore lim 0 a,, = 0 by (1). Choose N so that 
r,, 1+ a,, and 1 + g,,/r, +, are nonzero if n 2 N. Now define pN-, = 1and 

I1  

P,, = n. ( 1  + a,,), n 2 N. 
171 = N  
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If n 2 N then 1 + a,  = p,/p,-, , so g,, = (r; ,p, , /pnp,)  - r,,+,, and therefore 
p,, = r;, +,p, - ,(1 + g,/r, + )/r,,, which implies that 

Since (1 ) and (3) imply that C"~g,,,/r;,,+,I < m, Theorem 1 implies that the infinite 
product 

converges; moreover Q # 0because 1 + g,,,/r,,, + ,  # 0 if m 2 N. Now ( 1 )  and (4 )  
imply that lim,, ,p,, = Q / r ,  is finite and nonzero. rn 

To apply this theorem we must exhibit a sequence { r ; , }  that will enable us to 
obtain results even if C" la,, I = m. The following theorem provides a way to do this. 

Theorem 4. Suppose that for some positive integer q the sequences 
x 

a ( k ),, = a,,aLfpl), k = 1 , .  . . , q (with a$:) = I ) ,  
m =n  

are all defined, and 

Then n " ( 1  + a,,) converges. 

Proof Define 
k 

r:k) = 1 + ( - 1 1 1  a,, ( j ), 1 1 k s q  
j =  1 

We show by finite induction on k that 
k 

rLk)(l + a,,) - r,l$', = ( - 1 )  a,,af:) ( 6 )  
for 1 I k I q. Since limn ,,rA" = 1 we can then set k = q and conclude from ( 5 )  
and Theorem 3 with r,, = rA" that n " ( 1  + a,) converges. 

Since rA1)= 1 - a(," the left side of (6 )with k = 1 is 

( I  - a$: ) ) ( l+ a, , )  - ( 1  - a ! : i l )  = a,, - a:') - atla$:)+ af:il = -ar,a$:), 

since a$:!, + a,  = a?. This proves ( 6 ) for k = 1. 
Now suppose that ( 6 ) holds if 1 I k < q - 1. Since rAk)= rAk+ + ( - l)kaf,k+' ) ,  

( 6 ) implies that 

(rAk+l)+ ( - 1)k a,, - rL5 ' )  - 1 , + 1  = ( - 1 )  a,,aflk). ( k + l )  ) ( I  + a,,) ( - l ) k a ( k + l )  
k 

Therefore 

rAk+')(l+ a , l )- r;51)= ( - l ) k ( a , t a i ~ )- aik+l),I - a l l a ( k + l )  , , + I  )+ a ( k + l )  

= ( - l )(k+l)a,aj ,k+l),  

since aLkL,')+ a,a(,") = akk+ '1. This completes the induction. rn 

We now prepare for a specific application of Theorem 4. Henceforth A is the 
forward difference operator; thus, if {g,} is a sequence, then Ag,, = g,,,+, - g,,, 



while if G is a function of the continuous variable x then A G ( x )  = G ( x  + 1)  -
G ( x ) .Higher order forward differences are defined inductively; thus, if v 2 2 is an 
integer, then 

A similar definition yields AvG(x) .  

Lemma 1. Suppose that t is a real number, not an integral multiple of 
{ g m E = ,  is a sequence such that lim,, ,,g,, = 0 and 

E I A v g m l  < -
for some positive integer v. Then C"g,, e""' converges and 

2 ~ ,and 

(7) 

where 

Proof: Suppose that M > 2 v  and let 

Since 

we have 

= ( - I)'[ ;)
 M + r  

gm- ,  e imt .  
r=O m = I  

Reversing the order of summation in the last sum yields 

Since limm,,g,,, = 0 the last sum on the right converges to 0 as M + -. The 
second sum on the right is 

M M- vC ( h v g  
m - u  

) e i ~ n t  = C ( A " g m ) e i m t ,  
m = v m=O 

which converges as M + - because of (7). Therefore 
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which can also be written as 
v- 1 Z 

S = x Asgs+ el"' x (A"g,,)eim', 
s=O m=O 

with A, as in (9) . This and (10) imply (8). 

Henceforth we write G ( x ) = O ( x p " )to indicate that x " G ( x )  remains bounded 
as x + m. 

Definition 1. Let 9"be the set of infinitely differentiable functions F on [ I , m)  

such that 

F ( " ) ( ~ )= O ( x - a - "  ) V = O , l , . . .  ( 1 1 )  

For example, let F ( x )  = uY(x ) ,  where u is a rational function with positive 
values on [ I ,3 ~ . )and a zero of order p > 0 at m; then F satisfies (11)with a = p y .  
To see this, we first recall that if f = f ( u )  and u = u ( x ) ,  the formula of Faa di 
Bruno [2]for the derivatives of a composite function says that 

where the prime denotes differentiation with respect to x. We are assuming here 
that the derivatives on the right of (12) exist. Here u , . . . , u(" )are evaluated at x ,  
and C,. is over all partitions of r as a sum of nonnegative integers, 

r ,  + r, + ... +r, = r ,  

such that 

r,  + 2r, + ... + vr, = v .  

Applying (12)with f ( u )  = uY yields 

where(y)(') = y ( y  - 1) ... ( y  - r + 1). Since u O ) ( x )= o(x-"- ' ) ,  it follows that 

( u ~ p r ( x ) ) ( u l ( x ) ) " ' ( u l l ( x ) ) "... ( u ' " ' ( x ) ) "  = O ( x p " ,  

where 

h = p ( y - r )  + ( p  + l ) r ,  + ( p  + 2)r ,  + ... + ( p  + v ) r , = p y +  v 

because of (13) and (14). This verifies (11)with a = p y .  
For our purposes it is important to note that is a vector space over the 

complex numbers. Moreover, if F, E z,,i = 1,2,  then F, F, E 

Lemma 2. If F  E then 

A V F ( x ) = O ( x p a p " ) ,  v  = 0 , 1 , 2 ,  

Pro08 We show that 

I A " F ( X ) ~I K  max I F ( " ) ( ( ) / ,  ( 1 5 )
x < [ < x + v  

where K is a constant independent of F. Since F ( " ) ( x )= O ( x p a p " )this implies 
the conclusion. 



To verify (15),we note that if x > 1 and r > 0 then Taylor's theorem implies 
that 

where x < 5,. < x + r. Since AuF(x)= Z:=,(-l ) ' - " ( : ) ~ ( x+ r ) ,  it follows that 

Since EL,(- l)"(:)rl" = 0 for m = 0, .  . . , v - 1, we can now infer (15) with 

K = ( ~ ~ . , ( : ) r " ) / v ! .  rn 

Lemma 3. Suppose that F Ez.Let v be a fked positive integer and let t be a real 
number, not an integral multiple of 277. Then 

r 

F(m)ei '" '  = G(rz)eL'"+ 0 ( n p o p V f) ,  
m = I [  

where G E (and G depends upon v) .  

Proof: We write 
S S x F(m)eLn"= el"' x F ( n  + m)eLin'.  (16) 

m=12 m=O 

From Lemma 2, AuF(n + m )  = O((n  + m ) p " p "); that is, there is a constant A 
such that lAvF(n+ m)l <A ( n  + m)-"-" if n + m > 0. Therefore, if n > 2, 

Applying Lemma 1 (specifically, (8))with g,, = F(n + m )  and n fixed shows that 
Z x F ( n  + m)eUnt= G ( n )  + O ( n p a p v C 1  

t7Z =0 

with 
v- 1 

G ( x )  = ( 1  - ei ' )-"  x A , F ( x  + s ) ,  
s=o  

so G EE.NOW(16)implies the conclusion. 

The following theorem shows that Theorem 4 has nontrivial applications for 
every positive integer q. 

Theorem 5. Suppose that 

a,, = f (n )e l " ' ,  n = 1,2,3,..., (17) 

where f E$ for some y E (O,1], and let q be the smallest integer such that 

( 4  + 117 > 1. (18) 
Then the infinite product P = n" (1  + a,) converges i f  0 is not of the firm 2 k v / r  
with k an integer and r E (1,. . . ,q}. 
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Pruof: We show by finite induction on p that if p = 1, . . .,q then 
a,a$:) = + O(n-(P++')~-( /+p (19)3ci,(n)e'(~+l)"H 1 

where f ,  ~ q , , ~ ~ , .particular, (19) with p = q implies thatIn a,,aj:')= 

O(n-('!+"Y),so (18) implies (5)and P converges, by Theorem 4. 
From (17)and Lemma 3 with t = 0, F = f ,  a = y,  and v = q,  

r(-


($1) 
11 

= G ~ ( ~ ) ~ " ~ ~C f(m)e""" + o(~-Y-"+'1, 
v z = n  

with G ,  E 5.Therefore aria(,') f ( n ) e " 7 H ( ~ l ( n ) e " ' B  )). Since f E 5,= + o(~-Y-(!+'  

fl(n)e2"'H with f ,this can be rewritten as a,,aj,')= + ~ ( n - ~ ~ - * f ' ,  = fG, E qy. 
This establishes (19)with p = 1, so we are finished if q = 1. 

Now suppose that q > 1 and (19) holds if 1 Ip < q. Since ( p  + 1)0 is by 
assumption not an integral multiple of 277, Lemma 3 with t = ( P  + I ) @ ,  F = f,, 
a = ( p  + l ) y ,  and v = q - p implies that 

C
S 

fi,(m)el(i]+l)"7B= ~ ~ , ( ~ ) ~ ~ ( ~ ~ + l ) f ~ ~  1,+ ~ ( ~ - ( p + l ) y - i i + p + l  

I77 = 17 

where G, E qp+,,,.This and (19) imply that 

,C
x 

= GI,(n)e'(P+t')"H 1,+ o ( ~ - ( P + ~ ' ) Y - " + P + + '  
I 7  

1?Z  = 11 

so 

Since f E q,this can be rewritten as 
a n a j , " + ' )  = + O ( ~ - ( P + ~ ) Y - ( I + P + ~f 11+ l ( n )e ' (~+ ' ) f iB  

7 

with f,,, = fG, E qI,+,,,. rnThis completes the induction. 

Corollary 1. Suppose that {a,, j" is as defined in Theorem 5. Then the infinite product 
n x ( l  + a,,) converges i f  0 is not a rational nzultiple of 277. 

Corollary 2. Suppose that a > 0 and R is a rational function such that 
R ( x )  > 0 on [ N ,  3 ~ . )( N  = integer) and lim,,,,R(x) = 0.Then the infinite product 
n;,,(l+ (R(n))"eU")converges i f  0 is not a rational multiple of 2 ~ .  

Corollary 3. The infinite product n" (1  + n-"e " ' 8 )  converges i f  a > 0 and 0 is not a 
rational multiple of 277. 
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