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H. J. S. Smith and the Fermat Two 

Squares Theorem 


F. W. Clarke, W. N. Everitt, L. L. Littl'ejohn, and S. J. R. Vorster 

This article is dedicated to Professor P. R. Halmos 

1. INTRODUCTION. In his remarkable book A Mathematician's Apology, 
G. H. Hardy wrote [12, p. 971 

Another famous and beautiful theorem is Fermat's 'two square' theorem. The 
primes may (if we ignore the special prime 2) be arranged in two classes; the 
primes 

5,13,17,29,37,41, .. . 
which leave remainder 1when divided by 4, and the primes 

3,7,11,19,23,31,.  . . 
which leave remainder 3. All the primes of the first class, and none of the 
second, can be expressed as the sum of two squares: thus 

5 = 1' + 2', 13 = 2' + 3' 


17 = 1' + 4', 29 = 2' + 5' 

but 3,7, 11 and 19 are not expressible in this way (as the reader may check by 

trial). This is Fermat7s theorem, which is ranked, very justly, as one of the 
finest of arithmetic. Unfortunately there is no proof within the comprehen- 
sion of anybody but a fairly expert mathematician. 

The history of this theorem of Fermat is given in detail by Dickson [7, 224-2371. 
Dickson names the theorem after Girard, who discussed the result in 1632; 
however the common practice now is to attribute the result to Fermat, who stated 
in 1659 that he possessed an irrefutable proof by the method of infinite descent; 
see [7, p. 2281 and [2, p. 891. The first recorded proof is due to Euler given in 1749 
[7, pp. 230-2311; Bell writes, "It was first proved by the great Euler in 1749 after 
he had struggled, off and on, for seven years to find a proof" [2, p.891. The first 
proof that such prime numbers can be uniquely represented as the sum of squares 
of two positive integers was given by Gauss in 1801 [7, p. 2331. See also the account 
of the two squares theorem of Fermat in the books by Burton [4, Chapter 12, 
Section 21, and Hardy and Wright [14, Chapter XX]. 

The last sentence in the quotation from Hardy is significant. Hardy had an 
interest in the classification of proof; see, in particular, [13, p. 61 in connection with 
the "elementary" proof of inequalities. In this context the word elementa~y must 
not be confused with the words obvious or easy; many of the elementary proofs in 
[13] are subtle, ingenious, and far from obvious. When Hardy wrote [12] he was, 
more than likely, not aware that an elementary proof of this theorem of Fermat 
had been given in 1855 by H. J. S. Smith, one of his predecessors in the Savilian 
Chair of Geometry in the University of Oxford. This simple but remarkable proof 
of Smith is within the comprehension of those with knowledge of elementary 
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algebra, including simple properties of determinants, and the fundamental theo-
rem of arithmetic [6, Chapter I, Section 41. The proof is also remarkable for giving 
a construction that permits one to compute the integers of the two squares 
representation. 

In this paper we give Smith's proof of the theorem of Fermat and present what 
is, possibly, a new elementary proof of the uniqueness of the two squares represen-
tation, but now using Smith's ideas and method. This uniqueness proof involves the 
Euler Criterion [8, Section 111 for solutions of the quadratic equation x 2  = - 1 
(mod p);  we present a new existence proof that leads to a constructable solution 
of this equation. 

The original paper of Smith [20] is (the good news) only 2 pages long but is (the 
bad news for most of us) written in Latin; see also the collected works of Smith 
[21], in which [20] appears as the second contribution. The Smith proof has not 
gone entirely without notice; Chrystal [5, p. 4711 reproduces the proof in English, 
as does, in part, Dickson [7, pp. 240-2411; Davenport mentions the proof [6, p. 1221 
but does not give complete details. Barnes [I] gives an exposition of Smith's 
existence theorem, and establishes the connection between the Smith palindromic 
continuant and the Euler Criterion (see our Theorems 1 and 2 and their proofs). 

Both Serret [I91 and Hermite [I71 use ideas similar to the Smith method [20] to 
give an algorithm for finding the integers in the two squares representation of the 
theorem of Fermat. This method was subsequently improved by Brillhart [3] to give 
an impressively fast numerical procedure to determine the representation; as an 
example the Brillhart method gives 

lo5' + 577 = 7611065343808354245450401~+ 64862689068739216422454242. 

(1.1) 
The two squares theorem of Fermat continues to attract attention; see the recent 
contributions by Ewell [9], Heath-Brown [16], Wagon [22], and Zagier [23]. 

In Section 2 we give formal statements of the results to be proved by the Smith 
methods. In Section 3 we give a brief account of the life of Henry Smith. In Section 
4 there is a definition and statement of the properties of continuants. The 
remaining sections are devoted to proofs of the results. Lastly, in an appendix, we 
reproduce the original Smith paper [20]. 

At the end of Sections 6, 7 ,  and 8 we exemplify the general results by 
considering the case p = 13, and other cases including the example in (1.1). 

2. STATEMENT OF RESULTS. Let N := {1,2,3,.. . }  and P := { p  E N : p is a 
prime number}. 

Theorem 1 [Fermat and Gauss]. Let p E P with p -- 1 (mod 4). Then there exist 
two unique, positive, co-prime integers u, u E N such that 

p = u2 + u 2 ,  

Proof: See Sections 6 and 7. 

Theorem 2 [The Euler Criterion]. Let p E P with p -- 1 (mod 4). Then 
1. The quadratic equation 

x2  -- - 1 (mod p) (2.1) 
has two unique solutions x, ,x, E N such that 

1 < x , <  ( p - 1)/2 and ( p - 1 ) / 2 < x ,  < p ,  

with x, =p - x,. 
2. All other solutions of '(2.1) are congruent to x, or x, (mod p).  
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Proof See Section 8. 

For a detailed discussion of the Euler Criterion see the book by Dudley [S, pp. 
85-86]. 

2. HENRY JOHN STEPHEN SMITH. Henry Smith was born on 2 November 
1826 in Dublin, Ireland. His father died soon afterwards and the widow moved 
with her family to England. Smith was educated first by his mother and then by a 
succession of private tutors, before spending three years at Rugby School; from 
this School he gained entry to the University of Oxford, in 1844, by winning the top 
scholarship to Balliol College. In 1848 at Oxford he gained first class honours in 
both classics and mathematics; he also won the major University prizes in both 
these subjects, the Ireland scholarship in classics, and the Senior Mathematical 
Scholarship in mathematics. 

In 1849 the Balliol College fellowships in classics and mathematics fell vacant; 
until this time Smith seems to have been undecided as to whether to follow a 
career in classics or mathematics, but seems to have settled at this time on 
mathematics. His first paper, on geometry, dates from the next year. 

--

Henly John Stephen Sln~th(1826-1883) 
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Smith completed his first paper on number theory in 1854 and published it the 
following year in Crelle's Journal [20]. Unusually, even for that time, it was written 
in Latin, perhaps in homage to Carl Friedrich Gauss, whose Disquisitiones arith- 
meticae served as an inspiration. 

In 1859 Smith was elected to Fellowship of the Royal Society of London and 
then, in 1860, to the Savilian Chair of Geometry in the University of Oxford; two 
of his eventual successors to this Chair were G. H. Hardy and E. C. Titchmarsh. 

Henry Smith died in Oxford in 1883. 
It is puzzling that Henry Smith's work and name are so little known, even 

amongst those who make regular use of the ideas that he introduced; this point is 
discussed by Keith Hannabuss in his paper The mathematician the world forgot [lo]. 
Several historians of mathematics have ranked Smith with Cayley and Sylvester 
among the great pure mathematicians of the nineteenth century. In 1861 Smith 
proved the existence and uniqueness of what is now called the Smith Normal F o ~ m  
of a matrix with integer entries. This result has subsequently been used to prove 
the cyclic decomposition for modules, but Smith's first application was to deter- 
mine when linear Diophantine equations admit solutions, settling a longstanding 
problem first studied by Greek mathematicians. His remarkable contributions to, 
and his panoramic knowledge of, the theory of numbers can be seen in the 
monumental Report on the theory of numbers, reproduced in [21]. In this area, in 
1868, he shared the Steiner Prize of the Royal Academy of Sciences in Berlin for 
his solution of a geometric problem that involved the representation of integers as 
a sum of squares. 

Not so well known is Smith's early contribution to measure theory and integra- 
tion in his paper of 1875 On the integration of discontinuousfunctions; see [21, paper 
251. There, Smith introduced the first example of what is now called a Cantor set; 
Cantor's own example appeared eight years later and was not presented as his own 
discovery. Smith's example divides an interval into m > 2 subintervals, and then 
keeps repeating this process to each remaining subinterval, except the last. Smith 
also seems to have been the first mathematician to perceive the connection 
between measure and integral. However, his paper received less attention than it 
deserved, owing to an inaccurate review in the Fortschritte der Mathematik. In his 
history of integration, see [IS, pp. 37, 401, Thomas Hawkins has remarked: 

Probably the development of a measure-theoretic viewpoint within integra- 
tion theory would have been accelerated had the contents of Smith's paper 
been known to mathematicians whose interest in the theory was less tangen- 
tial than Smith's. 

For an informed discussion on the contents of this paper of Smith, and for the 
development of the ideas therein to higher dimensions, see [lo] and, especially, 
[ I l l .  

4. CONTINUANTS. Continuants are closely connected with continued fractions, 
as noted by Smith at the beginning of [20]. There is a detailed and elegant account 
of this connection in Chrystal [5, Chapter XXXIV, Sections 4-11]. However Smith 
uses only continuants in his paper and uses determinants to define them; for this 
definition see [5, Chapter XXXIV, Section 111 and the reference therein to the 



remarkable history of determinants by Muir and Metzler [18, Chapters I11 and 
XIII]. We follow Smith and make the 

Definition 1. For n E N let q,. E N ( r  = 1,2, . . . ,n ) ;  then define [ . I  : N n  + N by 
the determinant 

We note that 

1411= 41, 141, q21 = q1q2 + 1, and [ 4 1 ,  41,431 = qiq2q3 + q~+ q3. (4.2) 

Lemma 1. Let n E N with n 2 2. Then 

1. [ q l ,  q 2 , .  . . ,q,,I = [qll[q2, q3, . . .,qri] + [q3,. . . ,qn] 
2. [q, ,  q,, . . . ,q,,I N 
3. [ q , , q,,..., qnl = [ q n > . . . > q , > q l l  
4. [q, ,q,,..., qnl < [q1,q2,...,q11] 
5.  [ q 2 ,  q,, . . . ,qnl and [q,,  q,, . . . ,q,] are cogrime integers 
6. 

Pro05 Note that if in any formula in Lemma 1an empty continuant appears then 
it is convenient, and consistent, to give such a continuant the value 1. 

1. Expand the determinant (4.1) by the first row. 
2. Use (4.2), property 1 and mathematical induction. 
3. Standard property of determinants. 
4. Use properties 1 and 2. 
5. Use property 1. 
6. 	Use the Laplace expansion on (4.1) centred on row s;  see also the proof in [5, 

Chapter XXXIV ,  Section 61. 

5. THE EUCLIDEAN ALGORITHM 

Algorithm 1. Let r ,  s E N be co-prime with s < r and write 

for some n E N with n 2 2, q, E N ( i  = 1,2, . . .,n ) ,  and q,, 2 2. 

Thus a rational number r / s  > 1 is associated with a set of positive integers 
{q,,  q,, . . .,qii}satisfying the properties in (5.1). Conversely we have 
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Lemma 2. Let a set of positive integers {q,, q,, . . .,q,} be given with n 2 2 and 
q, 2 2. Then there is a unique rational number r/s > 1 whose Euclidean algorithm 
yields the set {q,, q,, . . . ,q,,}; moreover, r/s is determined by 

Here r and s are co-prime and given by 

r =  [q1 ,q2 ,. . . , q n ]  and S =  [ ~ z , q 3 , . . . , q r i I .  (5.3) 

Proof: Define r/s by (5.2) and apply property 1 of Lemma 1 n times. The result 
(5.3) follows from property 5 of Lemma 1. 

6. THE SMITH PROOF OF THE FERMAT THEOREM 

Proof: Let p E P with p = 1 (mod 4) and write p = 4r + 1. Let the number p be 
taken arbitrarily from the set of positive integers {I,2 , .  . . ,2 r}  and consider the 
corresponding set of rational numbers {p/p) ,  noting that 2 < p/p 5 p. If we 
apply Algorithm 1 to p/p we obtain a representation of the form 

Of course, the integer n and the set {q,,q,, . . . ,q,,} depend upon the particular 
choice of p. From property 5 of Lemma 1we obtain 

From Algorithm 1and from property 1 of Lemma 1, since p /p  > 2, it follows that, 
in the representation (6.2), 

q 1 1 2  and q , , 1 2 .  (6.3) 

Now take one of the rational numbers p/p with 

p E {2,3 ,. . . ,2r}; 

then we have the following chain of argument, using property 3 of Lemma 1 and 
(6.1), 

(say). It follows from (6.3), Lemma 2, and property 1 of Lemma 1that 1 < v < p/2, 
so v E {2,3,.. . ,2r}. Thus the chain of argument that gave (6.4) can be reversed, 
starting with v and finishing with p. 

This argument pairs off the elements of the set {2,3,. . . ,2 r}  and gives each 
member p of the set a unique mate v in the set. However this set contains an odd 
number of elements so there must exist at least one member, say A, that mates 
with itself in the chain (6.4). For this h we obtain from (6.4) 



Now apply Algorithm 1 to both sides of (6.5) to give a representation 

P = [ q l , q 2 , . . . , q n I ,  (6.6)  

with the palindromic property, and with (6.3)holding, 

q, =q,+l- l  ( i  = l , 2,..., n ) .  (6.7) 

If, in (6.71, n = 2t + 1 is odd then n 2 3 and the representation (6.6) takes the 
form, for s 2 2, 

P = [ 4 1 > . . . , 4. ~ - I ~ 4 s ~ 4 . Y - 1 ~ . . . ~ 4 1 1  

Now apply property 6 of Lemma 1 to give 

P = [ q l , ...,4s-1, q s I [ q s - l , . . . ,411 + [ q ~ , . . . ,qs -1I[qr-2>. . . ,411. 

Other properties of Lemma 1 permit us to write 

P = 141,. . . ,4,5-11{[41,.. . ,4,5-l, 4sl + [4s-2,.  . .,q ~ l } ,  

which represents the prime number p as the product of two factors that, using 
(6.3),are both greater than 1; this is a contradiction to p E P. 

Thus in (6.7) the integer n = 2t must be even and so (6.6) takes the form, for 
s 2 1, 

p = [ q 1 , . . . , 4 s > 4 s > . " ~ 4 1 1  

with q,  2 2 from (6.3).Now apply property 6 of Lemma 1 to give 

p = [ q l, . . . ,q s ] [ q, , . . . ,  411 + [q1,...~4,5-11[4.Y-1~~..~411 
and then 

2 2 
p = [41>. . .>qs1+ [q1>.. . ,qs-11. 

From property 1 it follows that [q,,. . .,q,$-,1 and [q,,. . . ,q,] are co-prime. 
This completes Smith's proof of the Fermat part of Theorem 1. 

Consider the case p = 13. Then p E {2,3,4,5,6}and the application of the 
Euclidean algorithm to each choice of p gives 

p = 2  n = 2  q l = 6  q 2 = 2  

p = 3  n = 2  q l = 4  q 2 = 3  

p = 4  n = 2  q l = 3  q 2 = 4  

p = 5  n = 4  q , = 2  q 2 = 1  q , = 1  q , = 2  

p = 6  n = 2  q l = 2  q 2 = 6 .  

Thus in the Smith pairing, 2 pairs with 6,3 pairs with 4, and 5 pairs with itself. The 
palindromic continuant given by 5 then yields the two squares result 

7. A COROLLARY. We have 

Corollary 1. Let p E P with p = 4r + 1. Then there are exactly 2r distinct continu-
ant representations of p 

P = [ q l , . . . > q n l  

with q,, 2 2. 
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Prooj5 Let p E {1 ,2 , .. . ,2r ) ;  then from (6.1) 

P [ q l , q 2 , . . . , q n ]
-- - and P = [q1 ,q2 , . . . ,q , , l  

P [q, , . . . ,qnI  

with q, 2 2; these continuant representations of p are distinct since otherwise, 
from (7.1),p / p  = p / p l  for p # pl. 

Let p have a representation p = [q , ,q,, . . .,q,] with q,, 2 2. If n = 1 then 
q ,  = q, = p and we can take p = 1 in (7.1). If n 2 2 then, since q,, 2 2, it follows 
from properties 1 and 3 of Lemma 1 that [q,,  . . .,q,l I( p  - 1) /2  so that in (7.1) 
we have [ q 2 ,. . .,q,] E {2 , .. . ,2r} .  

For p = 13 we obtain six continuant representations 

13 = [13] = [6 ,2 ]= [ 4 , 3 ]= [3 ,4 ]= [ 2 , 6 ]  
and 

8. PROOF OF THEOREM 2. We begin with 

Lemma 3. Given any n E N with n 2 2 and any set ofpositive integers {q, ,q,, . . . ,q,,} 
define 

I ( q , q . q , )  = q l q . . l l l - l l  

(8 .1)  
Then 

I1 , (q1 ,q2 , . . . , q I1 )= ( - l ) ' ' .  (8 .2)  

Proof: We have, from (4.2), 

I , (q , ,q , )  = [q1,q21 - [q1I[q21= 1. (8.3) 

For the general case we have, from property 6 of Lemma 1, 

[ 4 t , . . . , q n I  = [ 4 1 , . . . , 4 1 1 - 1 1 4 ~+ [41, . . . ,4 , -21 (8.4)  

[q2 , . . . ,qn l  = [ q 2 , . . . , q n 1 I q 1 1+ [q2,. . .>qrr-21. (8.5)  

Multiply (8.4) by [q,,  . . . ,q,-, I and (8.5) by [q , ,. . . ,q,-I 1 to give, using ( g e l ) ,  

( q lq . .  q )  = [q~,...qr,-21[q,~...~q,l-,l- [ q , ~ . . . ~ q , 1 - 2 1 [ q 1 ~ ~ ~ ~ ~ q 1 1 - 1 1  

= - In - l (q l , q2 , . . . ,  qn-1). 

Repeated application of this last result yields 

I , (q , ,q , , .  . . , q , ? )= ( - l ) " ~ ~ , - , ( q l , . .. , q , , - " )  ( r  E { 1 > 2 > . . . > f l- 21);  

taking r = n - 2 and using (8.3) gives I,(q,, q,, . . . ,q,,) = ( - 1)"-,12 = ( - l) , ,  SO 

(8.2)follows, as required. 

Proof of Theorem 2, Part I .  Let p E P with p = 1 (mod 4). Then the proof of 
Theorem 1 ensures that p has at least one palindromic continuant representation 

p = [ q , , .. . ,qs, 4 , .. . ,411 

with s 2 1 and q,  2 2. . 



Define x ,  E N by 

x ,  := [ q 2 , .. . ,q s ,q s , .  . ., 411; (8 .7 )  

it follows that, from q ,  2 2 and property 1 of Lemma 1, 

Now apply the result of Lemma 3 to the righr-hand side of (8.6),with n = 2s,  to 
obtain 

2 s 
- [ q q , 5 , q , 5 , . . q 2 1 ~ 2 . . ~ 5 ~ . ~ l l= - 1 = 1.  

From (8.6), (8.7), and property 3 of Lemma 1 the preceding result reduces to 

~ [ q 2 , . . . , q ~ > 4 ~ , . . . , q 2 1- x i  = 1 

and so 

xi = - 1 (mod p ) .  (8 .10)  

This result, together with (8.8) completes the proof of Part 1. 

Remarks 

1. We note that (8.9)was known to Henry Smith and is stated at the end of [20]. 
2. We note also, from the proof of this part of Theorem 2, that the number 

h = x o  (8.11) 

is a member of the set { 2 , 3 , .. . , r )  and, for this choice of A, the quotient p / h  
yields the palindromic continuant representation of p ;  see (6.5). 

Examples 
1. For the case when the prime p = 13 we have the following explicit results 

p = [ q l , q 2, . . . , q s , q s , . . . , q 2 , q 1 1  = [ 2 , 1 , 1 , 2 1  
x o  = [ q 2 , . .. , q s , q s , . .. , q 2 , q 1 ]  = = 

[ q 2 , . . . , q , 5 , q . $ , .. .>(I21= [ 1 J I  = 2. 

The general result 1 < x ,  < ( p  - 1 ) / 2  becomes 1 < 5 < 6 in this case. We can 
now confirm the results (8.9) and (8.10): 

2 - 1 3 . 2 - 5 2 = 1p [ q 2 ,  . . . > qs, qs , .  . . ,q21 - xo -

and 

x i  = 25 = 26 - 1 = - 1 (mod 1 3 ) .  

2. Let p = 1913; then p = 1 (mod 4 )  and, see (6.5) and (8.111, h = x ,  = 712 
since 7122 = 506944 = 265 X 1913 - 1 = - 1  (mod 1913), with 1 < 712 < 956 = 

(1913 - 1)/2 .  The Euclidean algorithm yields 

and since [2 ,1 ,2 ,5]= 43, [2 ,1 ,2]= 8 we have 432 + 82 = 1849 + 64 = 1913. 
3. For p = 969433, with p = 1 (mod 4 )  the appropriate palindromic continuant 

is p = [2 ,3 ,4 ,5 ,6 ,6 ,5 ,4 ,3 ,2]with [2 ,3 ,4 ,5 ,6]= 972 and [2 ,3 ,4 ,5]= 157; thus 
969433 = 9722 + 1.57~. 
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4. For the example (1.1) produced by the Brillhart method, i.e. p = lo5' + 577, 
it may be shown that 

h = x o  = 24574739597286316058804545812463447369459349571921 

and the relevant palindromic continuant is 

p =  [4 ,14 ,2 ,4 ,4 ,1 ,5 ,1 ,3 ,4 ,2 ,17 ,1 ,1 ,1 ,3 ,1 ,2 ,1 ,7 ,1 ,4 ,1 ,1 ,2 ,7 ,11 ,1 ,  

1 ,3 ,3 ,3 ,1 ,14,1 ,9 ,1 ,2 ,1 ,1 ,1 ,1 ,22,1 ,1 ,1 ,1 ,3 ,21,1 ,1 ,3 ,3 ,1 ,5 ,1 ,  
1 ,5 ,1 ,3 ,3 ,1 ,1 ,21,3 ,1 ,1 ,1 ,1 ,22,1 ,1 ,1 ,1 ,2 ,1 ,9 ,1 ,14,1 ,3 ,3 ,3 ,1 ,  

1 ,11 ,7 ,2 ,1 ,1 ,4 ,1 ,7 ,1 ,2 ,1 ,3 ,1 ,1 ,1 ,17 ,2 ,4 ,3 ,1 ,5 ,1 ,4 ,4 ,2 ,14 ,4 ] ,  

which has length 112. Thus we have, for the two squares representation, 

u = [4 ,14 ,2 ,4 ,4 ,1 ,5 ,1 ,3 ,4 ,2 ,17 ,1 ,1 ,1 ,3 ,1 ,2 ,1 ,7 ,1 ,4 ,1 ,1 ,2 ,7 ,11 ,1 ,  

1 ,3 ,3 ,3 ,1 ,14,1 ,9 ,1 ,2 ,1 ,1 ,1 ,1 ,22,1 ,1 ,1 ,1 ,3 ,21,1 ,1 ,3 ,3 ,1 ,5 ,1]  

= 7611065343808354245450401 
and 

u =  [4 ,14 ,2 ,4 ,4 ,1 ,5 ,1 ,3 ,4 ,2 ,17 ,1 ,1 ,1 ,3 ,1 ,2 ,1 ,7 ,1 ,4 ,1 ,1 ,2 ,7 ,11 ,1 ,  

1 ,3 ,3 ,3 ,1 ,14,1 ,9 ,1 ,2 ,1 ,1 ,1 ,1 ,22,1 ,1 ,1 ,1 ,3 ,21,1 ,1 ,3 ,3 ,1 ,5]  

= 6486268906873921642245424 

with p = u2 + u2 ,  as in (1.1). 

Proof of Theorem 2, Part 2. Suppose that r is another solution of the quadratic 
equation (2.1) with r # x, and r # p  - x,; without loss of generality we may 
suppose that r is a least, positive residue (mod p). Then r 2  = x i  = - 1 (mod p )  
and hence p divides r 2  - x i  = (r  - x,)(r + x,); since p is prime it divides r - x, 
or r + x,. The former case implies r = x, (mod p),  but since both r and x, are 
least, positive residues it follows that r = x,. In the latter case r = -xo =p - x, 
(mod P) and since r and p - x, are least, positive residues it follows that 
r =p - x,. This contradiction completes the proof of Part 2. 

9. THE "SMITH" PROOF OF THE GAUSS THEOREM. We are now in a 
position to give a proof, using the methods of Henry Smith, of the Gauss 
uniqueness result for the Fermat theorem, as presented in Theorem 1. 

Proofi Let p E P with p = 1 (mod 4) and suppose that there are two, co-prime 
two squares representations: p = u2 + u 2  and p = s2  + r2 ,  with u < u, s < r. 

Apply Algorithm 1 to the rational numbers u/u and r/s to obtain 

[ q 1 , q 2 > . . . , q n I  r [ t1, t~> . . . > tr,l I ,

1 < - = and 1 < - = 
u [ q 2 , . . d n I  s [ t2 , . . . , tnt]  ' 

then 

s = [ t 2 , .. . , tm]  and r = [ t , ,  t,, . . . , t , ]  

Hence, property 6 of Lemma 1 ensures that 



p = s2 + ,.2 = 2 2 
[ t , , . . . , t , , , I  + [ t , , t 2 > . . . > t 1 , 1  

= [ t n ~ , . . . , t 2 , t l , t l , t 2 , . . . , t n l l .  (9 .2)  

Part 1of Theorem 2 guarantees that the continuants [q,- ,,. . . ,q , ,  q , ,  . . . , q,-, ,q,] 
and [ t,,-, , . . . , t , ,  t , ,  . . ., t,,,-,, t,,] are both solutions of the quadratic equation 
x 2  = - 1 (mod p )  and satisfy 1 < x < ( p  - 1) /2 .  From the uniqueness of this 
solution we have 

From (9.1), (9.2), and (9.3) it follows that 

Applying Algorithm 1to both the continuant terms in (9.4) shows that rn = n and 
qi = t i  ( i  = 1,2 ,  ... ,n); thus u = s,  u = t and the uniqueness result is established. 

10. APPENDIX. In this appendix we reproduce the original 1855 paper [20] of 
Henry Smith. 

DE COMPOSITIONE NUMERORUM PRIMORUM 
FORMAE 4h + 1EX DUOBUS QUADRATIS 

Sit 
1 

41 + 1 

fractio continua, cujus numerator, qui determinanti 

aequalis est, per hujusmodi formulam [ q ,q2 q ,  . . . q , ,  q,,] exprimatur. Erit ergo 
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quae aequationes pendent ab illa forma determinantali, ambae autem L. Eulero 
debentur. 

Itaque, si quantitatum q par sumatur numerus, ipsaeque ita serie symmetrica 
disponantur, ut binae inter se aequales fiant, elucet, quantitatem 
[ q l  q2 . . . qi qi . . . q2 q l ]  summam fore duorum quadratorum inter se primorum; fit 
enim 

Contra in numero quotientium impari, erit 

unde colligis, numerum [q ,  . . .qi . . . q, ]  primum esse non posse, nec duplicem 
numeri primi; si quidem casus excipis, in quibus, aut i unitati aequatur, aut i 
binario, q,  unitati. 

Sit p numerus integer datus; p,,  p 2 , .  . . p, series numerorum, qui ad p primi 
sunt, ipsiusque p dimidio minores. 

P PFormentur fractiones continuae -, -, . . .,E ; quae omnes ita terminentur, ut 
P1 P2 Ps 

is quotiens qui in extremo loco ponatur, unitatem superet. Hinc patet, quanta 
fuerit numerorum p,,  p 2 , .  . . p, multitudo, tantum fore numerum determinantium 
[ q , . . . q,], qui dato numero p aequales erunt, neque praeter illos ullum dare 
ejusdem formae determinantem, cujus et primus et extremus quotiens unitate 
major sit, quique numero p aequalis esse possit. 

Jam vero, quum duo determinantes [ q , . . . q,] et [q, . . . q,] aequales sint, 
quumque ipsum q, unitate majus sit, apparet [q,, . . .q,]  ex una aliqua fractionum 
!! oriri. Unde sequitur, data quavis fractione P, inveniri posse aliam in eadem 
P P 

serie, quae quotientes eosdem, ordine inverso, repraesentet. 
Sit p primus, formae 4A + 1;ut numerus determinantium ipsi p aequalium par 

existat. Quum ipse p unus e determinantium serie fiat, unus certo alius inveniri 
poterit in quo quotientium ordo invertendo non mutatur. Cum sit ergo 

P = [ q 1 q 2 . . . q i q i . . . q 2 q l I  

erit denique 

Quam theorematis Fermatiani demonstrationem maxime elementarem esse 
patet, quum pendeat a conversione fractionum vulgarium in fractiones continuas. 

Singulos autem formae 1 + x2 divisores ex duobus quadratis conflari, eodem 
mod0 demonstrare in promptu est. Sit enim 

apparet fore 

Oxford, Maio 1854. 
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