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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

Number Theory and- Semigroups 
of Intermediate Growth 

Melvyn B. Nathanson 

The semigroup S is finitely generated if it contains a finite subset A such that 
every element of S can be written as a product of not necessarily distinct elements 
of A. The length of an element s E S with respect to A,  denoted lA(s),is the 
smallest integer m such that s can be written as the product of m elements of A. 
The length of the identity element is 0. The growthfunction y,(n) of S with respect 
to A counts the number of elements s E S of length at most n ,  that is, yA(n)= 

card{s E S : lA(s)5 n). 
The semigroup S has polynomial growth of degree k with respect to A if 

yA(n)5 conk for some positive constant co and all sufficiently large n. For 
example, if S is the free abelian semigroup of rank k generated by a set A of 
cardinality k, then the number of elements of length exactly m is ("':!;'1, and 

so S has polynomial growth of degree k. 
The semigroup S has exponentialgrowth with respect to A if there exists a real 

number 0 > 1 such that yA(n)2 0 '9o r  all sufficiently large n. For example, if S is 
the free semigroup of rank k 2 2 generated by a set A of cardinality k, then the 
number of elements of length exactly m is km, and 

so S has exponential growth. 
The semigroup S has intermediategrowth with respect to A if, for every positive 

integer k and for every real number 0 > 1, we have 

for all sufficiently large n. The purpose of this note is to give a simple and 
self-contained proof of the existence of semigroups of intermediate growth. 

The rate of growth of a semigroup S is an intrinsic property of the semigroup, 
that is, the growth is independent of the choice of generating set. This is easy to 
prove, since if A and B are two generating sets for S, then each element of B can 
be written as a finite product of elements of A. Thus, there exists a constant c > 0 
such that lA(b)5 c for all b E B. If s E S is a product of m elements of B, then s 
can be written as a product of at most cm elements of A,  and so lA(s)5 cl,(s) for 
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all s E S. Therefore, if IB(s) 5 n, then IA(s) 5 en, and yB(n) 5 yA(cn). Similarly, 
there exists a constant c' > 0 such that yA(n) lyB(cln). It follows that the 
functions yA(n) and yB(n) have the same growth rates (polynomial, exponential, or 
intermediate). 

It is not obvious that semigroups of intermediate growth exist. In the analogous 
case of a group G generated by a finite set A,  the length of an element g E G is 
the smallest number m such thatg can be represented in the form 

where a,, . . . , am E A. In a famous problem in this MONTHLY in 1968, Milnor [S] 
asked if there exist groups of intermediate growth. The question for groups was 
answered affirmatively by Grigorchuk [I, 2, 41. Semigroups of intermediate growth 
have also been constructed, but the proofs that their growth functions satisfy (1) 
are complicated. The semigroup constructed in Theorem 1is known, but the proof 
by means of elementary number theory is new. We prove the intermediate growth 
property using only Chebyshev's Theorem [6, Theorem 6.31 that d x ) ,  the number 
of primes up to x, satisfies the inequalities 

-
C1X 

-< T ( X )  l-c2x 
log x log x 

for all x 2 2, and the following simple upper bound for the Hardy-Ramanujan 
partition function p(n). 

Lemma 1. For evely integer n 2 2, p(n) < 2n21". 

Proof: The function p(n) counts the number of partitions of a positive integer n. 
A partition of n is a sequence of positive integers ul, . . . ,us such that n = u, + u2 
+ ... +us  and u, 2 u2 2 ... 2 us. Associated to this partition is an array of 
points, called the Ferrers graph, consisting of u, points on the first row, u, points 
on the second row,. . . ,us points on the s-th row. For example, corresponding to 
the partition 19 = 7 + 5 + 4 + 2 + 1 is the graph in Figure 1. 

* 

Figure 1 

Consider the largest square array of dots that can be found in the upper left corner 
of the graph. In the example in Figure 1, this square consists of three lines, each 
with three points. The length of this square is some positive integer r I16,and 
the square contains r 2  points. The remaining n - r 2  points in the graph must lie 
on the first r lines, to the right of the square, or on the first r columns, underneath 
the square. The number of .ways to add these points to the graph is at most n2'. 
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Therefore, the number of partitions of n satisfies 
[ ~ n i  

p ( n )  5 C n2' < 2n2J". 
r = l  

Theorem 1. Let S be the semigroup of 2 x 2 matrices generated by the set A = {a ,  b}, 
where 

a = ( i  :) and b =  (: :). 
Then 

22c1Jn/10gn5 yA(n) < n Z p ( n )< 2n2J"+' (3) 
for some constant c, > 0 and all suficiently large n. In particular, S has intermediate 
growth. 

Prooj? We observe that the matrices a and b satisfy the identities 

b2 = b ,  

and 

for every positive integer k .  Therefore, for any positive integers k, ,  . . . , k ,  we 
have 

r 1 r \ 

Let p,, p,, . . . ,p, be distinct prime numbers not exceeding 6.Then 

By Chebyshev's Theorem (2), the length of this element does not exceed 

for all sufficiently large n. Therefore, each of these elements is counted by the 
growth function yA(n).These elements are distinct, since every positive integer is 
uniquely a product of primes, and so every subset of the primes up to fi produces 
a different element of the semigroup S of length at most n. This gives the lower 
bound 

~ ( J l t ),22clJlt/l0g
Y A ( ~ ) > ~  -

Next we compute an upper bound. Let s E S have length l,(s) I n. There are 
three possibilities. First, there are n + 1 elements of the form s = a" with 

0 I u I n. Second, there are ( l ) elements of the form s = aUbaYwith u ,  u 2 0+ 

and 0 I u + u In - 1. Third, we can have s = a"sfa",where s' = baklbak2b ... 
bakrb, u ,  u are nonnegative integers with u + u I n - 3,  and r,k,,  . . . ,k ,  are 
positive integers such that k ,  + ... +k,  + r + 1 I n. Equation ( 4 )  implies that 
sf = bakc(l)bakc(2)b... bako(r)bfor every permutation a of 1, . . . , r ,  so we can 
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assume that k ,  2 ... 2 k,. 2 1. Let ki = k ,  + 1. We associate the following parti-
tion of n to the semigroup element s f :  n = k;  + ... +kb + 1 + ... + 1, where 
k;  2 ... 2 k: 2 2 and the number of 1's in the partition is 

This is a one-to-one mapping of the elements s' to partitions of n. It follows that 
there are at most p(n)  semigroup elements sf of the form (4) with k ,  + ... +k,.  + 
r + 1 r n. Since u + u r n - 3, there are ("  ') choices of nonnegative integers 

u ,  v ,  and so there are at most semigroup elements of the third type. By 
Lemma 1,  for n 2 2 we have 

This gives the upper bound. The semigroup S has intermediate growth since the 
left side of inequality (3) grows faster than any polynomial, while the right side 
grows slower than any exponential function. 

Let A be a finite subset of a group, with 1 EA. Let S be the semigroup 
generated by A, and let G be the group generated by A. Denote by An the set of 
all products of n elements of A. Denote by A'" the set of all elements of the 
form a:' ... a". The growth function of the semigroup S with respect to A is 
yA ,(n) = IA'", and the growth function of the group G with respect to A is 
yA,,(n) = IA' " 1 , Clearly, yq,,(n) i yA,,(n) for all n. It is natural to ask if these 
two functions must have similar growth rates. Grigorchuk [3] proved that if yA,,(n) 
has polynomial growth of degree k ,  then yA,,(n) also has polynomial growth of 
degree k .  It is not known if it is possible for the semigroup function yA,,(n) to 
have intermediate growth while the group function yA,,(n) has exponential growth. 
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