
The Gottschalk-Hedlund Theorem

Randall McCutcheon

The American Mathematical Monthly, Vol. 106, No. 7. (Aug. - Sep., 1999), pp. 670-672.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28199908%2F09%29106%3A7%3C670%3ATGT%3E2.0.CO%3B2-C

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Dec 22 05:33:24 2007

http://links.jstor.org/sici?sici=0002-9890%28199908%2F09%29106%3A7%3C670%3ATGT%3E2.0.CO%3B2-C
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


The Gottschalk-Hedlund Theorem 

Randall McCutcheon 

In 1955 Gottschalk and Hedlund proved that if X is a compact metric space and 
T : X -. X is a minimal homeomorphism (in other words, if the only closed sets 
Y c X for which TY c Y are Y = X and Y = 0),and if f : X -, R is continuous, 
then f = g - Tg for a continuous function g (where Tg(x) = g(Tx)) if and only if 
there exists K < m < K for all N E N and x E Xsuch that I C ~ = o ~ n f ( x ) l  [3]. 

Necessity is obviously violated if one allows X to be non-compact. However, the 
following theorem, which for Hausdorff spaces is due to Browder [I], is also true: 

Theorem A. Let (X,  T )  be minimal, where X is any topological space and T : X -. X 
is continuous. Let f : X -, R be continuous and suppose that for some K < cc we haue 

I E L o  Tnf(x) I < Kfor all N E N and all x E X. Then for some continuous g we have 
f = g - Tg. 

In 1993 the author, at the request of P. Schwartz, produced a proof of the 
Gottschalk-Hedlund theorem. It amounted to a minor alteration of a proof found 
by the author in 1989 of the fact (due to Bohr) that the integral of an almost 
periodic function, if it is bounded, is itself almost periodic; see [2, Theorem 5.21. 
The proof, which sufficed for Theorem A as well, was so innocuous as to seem 
hardly interesting. 

Schwartz, however, noticed something novel in the proof that "made the 
existence of a more general cocycle theorem seem likely" [6]. Indeed, he was able 
to adapt the proof to obtain a generalization of the Gottschalk-Hedlund theorem 
in a setting involving convolution operators. M. Lin and V. Bergelson then 
suggested that the proof would go in the context of Markov operators. Schwartz 
obtained something along these lines in [7]. 

Finally Lin and I. Kornfeld in [S] obtained a more general result of this type. 
Let X be compact space. A Markov operator on C(X)  is a positive contraction T 
with T1 = 1. 

Theorem B. Let X be a compact Hausdoi3Ffspace, and let T be an irreducible Markou 
operator on C(X)  (see [51 for the definition of irreducible). If g E C(X)  satisfies 
s ~ p , l l C ~ ~ T ~gll < cc, then (and only then) there exists f E C(X)  with g = f - Tf. 

The progressively more general results obtained in [6], [7], and [5] suggest that 
perhaps the proof we present here is somewhat interesting, after all (the central 
idea is mimicked in all three of these cases). Some form of the proof could, of 
course, be distilled from any of the aforementioned papers (and, in fact, it appears 
explicitly in [6]), but it wouldn't be completely clear how to do so most simply, as 
there are a few complications in the more general situations that require modifica- 
tion of the original argument. 

Since no extra effort is involved, we actually prove a version of Theorem A that 
allows for continuous time, in which case the functional equation takes the form 

d 
- -g(T,x) = f(T,x); see [4, Lemma 2.71. Note that the proof remains valid for 

dt 
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1:Remark. In the case of discrete time, we take 

maps and semiflows as well as homeomorphisms and flows. Finally, we derive as a 
corollary (Theorem D) the result that led to the proof's discovery: the integral of 
any almost periodic function over R, if bounded, is almost periodic. 

Theorem C. Let (X,  {TI}) be a minimal $ow (with either discrete or continuous 
time). Let f : X -, R be continuous. If for all x E X there exists K < such that 
I j,';~,f(x) dt 1 < K for all L 2 0, then there Liists a continuous function g such that 

d 
- -g(T,x) = f(T,x) for al lx E X. 

dt 

to mean C i - ' .  

Proofi For x E X, put g(x) = f(x)  dt. We claim that for every L 2 0,supN ,,j'd\i~~ 
g(x) = SUP,. L /,,T, f(x)  dt. 

Suppose the claim is false. Then there exists x E X and L 2 0 such that 
N
g(x) - sup,. ,loTI f(x)  dt = r > 0. Pick M < L such that g(x) = j'r~~f(x) dt. 

Then j:~, f(x) dt - E for all N 2 L. Let S = inf,, ,j;TIf(x) dt and fix 
S 2 L with j1;7, f(x) dt < S + r .  

By minimality of the flow, {Tly : t 2 0) is dense in X for every y E X since its 
closure is a non-empty invariant set. In particular (taking y = TL-,x), we may 
choose r 2 L - M such that T,.x lies in a neighborhood of x suitably chosen so as 
to ensure that 

We have used continuity of the map x -, jl;T, f(x) dt; this is a fairly routine 
exercise. Hence 

a contradiction that proves the claim. 
We now have, for all L 2 0, 

N L + N  
g(T,x) = sup / 7,f(TL*) dt = sup / T,f(x) dt = g ( x )  - / L ~ l f ( x )df.  

N z O  0 N z O  L 0 

(1) 

d
By the fundamental theorem of calculus, - ,g(TIx) = f(TIx) (the discrete case 

follows directly from (1) by letting L = 1). All that remains, therefore, is to show 
that g is continuous. 

NBy inspection g is lower semicontinuous. Let h(x) = inf,. ,1, T, f(x) dt. Then 

To see this, just replace f by -f in the argument above. Clearly h is upper 
semi-continuous. Combining (1) and (2), we obtain (g  - h)(T,x) = (g - h)(x) for 
all L 2 0 and all x E X. Let x, y E X and E > 0 be arbitrary. Notice that (g  - h) 
is lower semicontinuous. Utilizing the denseness of orbits, we obtain L > 0 such 
that TLx is "close enough" to y to ensure that (g - h)(x) = (g  - h)(TLx) 2 
(g - h)(y) - E .  However, since E is arbitrary, (g  - h)(x) 2 (g  - h)(y). Reversing 
the roles of x and y, we see that actually (g - h)(x) = (g - h)(y), which implies 
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that (g  - h) is constant on X. Upper semicontinuity of g now follows from upper 
semicontinuity of h, since g differs from h by a constant. rn 

Recall that a continuous function f : [O, m) -, R is almost periodic if for every 
E > 0 the set {n : I l  f (x)  - f(x + n)ll, < E} is syndetic, i.e, has bounded gaps. For 
L 2 0, let T, f (x)  = f(x + L). It may easily be"shown that if f is almost periodic 
then X = { TL f : L 2 0) is compact in the uniform norm. Moreover {T,}, . , acts 
as a minimal isometric flow on X (with respect to the uniform norm) and f(x)  may 
be recovered by looking at the values at 0 of the members in the orbit of f :  
f(x) = Tx f(0) = g(Txf ), where g is the (continuous) function that assigns to a 
member of X its value at 0. 

More generally, if (X,  {T,})  is a minimal isometric flow on a compact space, 
y E X and g : X -. R is continuous, the function f( t )  = g(T,y) may be shown to 
be almost periodic. Hence the almost periodic functions are exactly those that 
arise (in this manner) from isometric flows on compact spaces. The following 
immediate corollary to Theorem C makes use of this fact. 

Theorem D. Let F : [O, cc) -, R be almost periodic. If there exists K < such that 
I /,LF(~) dt l < K for all L 2 0, then H(s) = / ; ~ ( t )  dt is almost periodic. 

Proof: We have an isometric flow on a compact space (X,{T,}), a continuous 
function f on X, and a point x E X  such that F(t)  = f(T,x). The boundedness 
condition in the theorem is now exactly as in Theorem C. Hence there exists a 
continuous g on X such that H(s) = /,"Ti f(x)  dt = g(x) - g(T,x), which implies 
in particular that H is almost periodic. rn 
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