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A Mean Value Theorem 

Tadashi F. Tokieda 

Several theorems go by this name. The present note adds to the assortment an 
unusual variant (Theorem I), which involves the shape of the underlying region in 
an interesting way. 

We work in Euclidean spaces, although Lemma 2 and the second inequality of 
Lemma 3 carry over to general Riemannian manifolds. V and I I denote gradient 
and norm with respect to the standard inner product < , > , and d stands for 
boundary. All our functions are real-valued. A gradient curve of a function f is an 
integral curve of Vf. 

Theorem 1. Let f be a C'function on a closed ball B. Then there exists b E B at 
which IVf(b)l .diam(B) = maxf - minf.  

The proof is obtained via Lemmas 2 and 3. 

Lemma 2. Let f be a C'function without criticalpoints on a compact region B. Then 
eueiy gradient curve off begins and ends on dB. 

Proof Say a gradient curve y(s) is defined for s from s - to s,. We have 

1 f - lim f ( u ( s ) )  = l( 'f, d r )  
3 ' s - S'S Y 

= Vf I Idyl because y is tangent to Vf ( * ) 

2 min l Vf 1 . length( y ) . 
On compact B, f is bounded, so if f has no critical points (min lVfl > 01, ( *  
shows that length(^) is finite and ~ ( s + )exist. Unless both y(s-)  and y ( s+ )  lie on 
dB, y can be extended beyond s or s+by the existence theorem for solutions of 
differential equations, contradicting the choice of s ,. 

Remark. In Lemma 2, compactness is indispensable: think of the height function 
on an infinite vertical cylinder. 

Lemma 3. Let f be a C'function on a closed ball B. Then 

maxf - minf 
min lVfl I < maxlVfl 

diam( B )  -

Proof First inequality: If f has critical points on B, then min(Vf( = 0. Otherwise 
consider the gradient curve y through the center of B. y reaches dB by Lemma 2, 
so that length( y )  2 diam(B); combine this with ( * )  to get 

maxf - minf 2 min I Vf 1 .diam( B )  . 
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Second inequality: Let 1 be a line segment that joins a minimum and a maximum 
of f .  Since length(1) 4 diam(B), 

rnmaxf - minf = j (Vf,  dl) 5 j lVfl dl1 5 maxlVf . diam(B).
I I 

Remark. In Lemma 3, the first inequality is true only on a ball: f(x, y )  = x is a 
counterexample on [0, I ]  x [O,1]. The second inequality holds on any convex 
region. Both become equalities for affine functions on balls. 

Theorem 1 is now immediate: 

Proof of Theorem 1 Apply Lemma 3 and the intermediate value theorem to I Vf 1. 
rn 

I do not know how close the mean value property of Theorem 1 comes to 
characterizing balls. However, Theorem 1 does admit a partial converse. To state 
it, we need a definition. 

The width wB(e) of a compact region B in the direction of a unit vector e is 
defined as follows. 'Sandwich' B by a pair of parallel planes perpendicular to e; 
wB(e) is the distance between these planes: 

min (e ,  r ) .  
r s B  

B has constant width if w,(e) has the same value for all directions e. A ball has 
constant width, but there are shapes of constant width that are not balls (e.g., 
Reuleaux's tetrahedron). 

Aside. Why are lids on manholes round? Answer: because a lid whose rim is not a 
curve of constant width can fall into the hole if (un)suitably rotated. Of course, the 
lid and the hole need not be circular; any shape of constant width would be safe. 

Return to the partial converse to Theorem 1. 

Theorem 4. Let B be a compact region such that for every linear function f on it, there 
exists b E B at which I Vf(b)/ . diam(B) = maxf - minf. Then B has constant width. 

Proof Suppose B has maximal width in the direction of e+ ,  minimal width in the 
direction of e-,  and wB(e-) < w,(e+). Then the linear function f ( r )  = (e- ,  r )  
violates the assumed property of f ,  as I Vf l = 1,diam(B) = w,(e+ ), maxf - minf 
= w,(e- 1. rn 
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