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Some Fundamental Control Theory I: 

Controllability, Observability, and Duality 


William J. Terrell 

1. INTRODUCTION. It is well known that a single n-th order nonhomogeneous 
linear differential equation is equivalent to a system of n first order linear 
differential equations. Specifically, an n-th order linear equation 

with real constant coefficients k , , is equivalent, via the standard definition of the 
vector variable z = [ y  y' y" . . . y ( " ' ) I T ,to the linear system 

where 

is a companion matrix, the k ,  are as in ( I ) ,  and 

is the n-th standard basis vector. 
What about the converse? When can a constant coefficient linear system 

where A is n x n and b is n x 1, be transformed to (2) by a nonsingular linear 
transformation of the state variable, z = Tx, where T is a constant matrix? Since 
z' = Tx' = (TAT-')(Tx) + Tbu = (TAT-')z  + (Tb)u, we are led to ask: When is 
there a nonsingular T such that TAT-' is a companion matrix and Tb is the n-th 
standard basis vector? 

The answer to this question is known [S, Chapter 21, although it seems not to be 
common knowledge outside the mathematical control community. A linear trans- 
formation of the state x that transforms (5) to (2) is not always possible, as can be 
seen by considering the diagonal system 

In advanced courses in dynamics the subject of normal forms achieved by coordi- 
nate transformations is an important topic. And in the literature of mathematical 
control theory, questions concerning alternative system representations have al- 
ways been important. However, we know of no elementary differential equations 
text outside the control-theoretic literature that systematically addresses the ques- 
tion of a transformation from (5) to (2). 
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The primary purpose of this article is to introduce a circle of ideas in mathemat-
ical control theory. The approach is via the question of "equivalence" between 
n-dimensional first order linear systems like ( 5 )  and n-th order linear equations 
like (1).The full answer to the equivalence question introduces some of the central 
concepts of modern control theory. We derive some classical results concerning the 
important control-theoretic concepts of contvollability and obseruability. We also 
consider the relationships of these concepts with other important topics in control, 
such as stabilization of equilibria, and linearization of nonlinear systems using 
coordinate change and state feedback. 

In Sections 2 and 3 we clarify the relationship between the system (5) and the 
equation (1) and derive a necessary and sufficient condition for equivalence. 
In Section 4 we explore the equivalence condition of Section 3 by motivating 
and explaining its meaning as a controllability condition. We then rephrase 
our original equivalence problem and introduce the concept of observability. 
An easy step in Section 5 then shows the algebraic duality of controllability 
and observability. 
In Section 6 we indicate briefly the importance of these developments to 
questions of asymptotic behavior such as stability. 
Finally, Section 7 briefly discusses some extensions of Sections 4-6 to the case 
of linear systems with multivariable input and multivariable output. 

2. A SIMPLE EXAMPLE. Let us begin with a naive approach to transforming a 
simple example and then consider a precise definition of linear equivalence 
of systems. 

Example 1. Consider the system, 

which has the form (5) with 

Differentiate (7b) and substitute from (7a) to obtain x'; + 3x', = u(t). This second 
order equation for x2 has the form (1) for n = 2, and a solution of it for x,(t) 
determines a function x,(t) (using x, = xi  + x, from (7b)) so that system (7) is 
solved. Thus, system (7) can reasonably be said to be equivalent to the second 
order equation y" + 3y' = u(t). 

Is there another second order equation of the form y" + k,y' + k,y = u(t) that 
is also equivalent to (7)? For example, we might try to get a second order equation 
for x,. This question is handled using a precise definition of equivalence. Note that 
the equation y" + 3y' = u(t) has the linear system form 

We expect that there is a transformation from R~ to itself that transforms our 
original system (7) to the form (8). Since the differential equations are linear, we 
expect that the transformation is linear, say z = Tx. Differentiation then gives: 
2' = TAT-lz + ~ b u ( t ) .  
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Definition 1. The system x' = Ax + bu(t)  is linearly equivalent to the system 
z' = Ez + fu(t)  if there exists a nonsingular matrix T such that 

TAT-' = E ,  ~b = f .  ( 9 )  

Thus, (5)  is equivalent to (2)  if and only if there is a nonsingular T such that 
TAT-' = P and Tb = d ,  where P and d are given in (3)  and (4). 

In Example 1we obtained a second order equation for the variable x,. If we set 
z1 = x,, z2  = x;,  then z ,  = x i  = x ,  - x,, so a transformation demonstrating the 
equivalence of (7)  and (8) is given by 

The natural questions concerning existence, uniqueness, and computation of T 
arise. Before proceeding to answer these questions it is instructive to try to 
transform the following example to the form (2). 

Example 2. Let A be as in Example 1, but let b = [ I  1IT.Show that this system 
cannot be transformed to the form (2). Hint: In Example 1 we knew P once we 
had the second order equation, but, in fact, we know P anyway because by 
similarity we know P's characteristic polynomial. 

3. EQUIVALENCE AND THE COMPANION MATRIX P. System (2 )  is very 
special; we call it a companion system because P is a companion matrix defined by 
the characteristic polynomial An + k,hn-' + k 2 h n - 2+ ... +k, , - I  h + k,,, which 
is the same as the characteristic polynomial of any matrix that is similar to P. 
Example 1shows that system (5 )may be equivalent to a companion system, and we 
have seen two examples of (5 )  that are not equivalent to a companion system, 
namely, Example 2 and a two-dimensional system with diagonal A having a 
repeated eigenvalue. 

3.1 A Similarity Invariant. It is convenient to make the following definition. 

Definition 2. The vector x is a cyclic vector for the square matrix A if the n 
vectors x, Ax,. . . , A n - ' x  are linearly independent. 

In (21, d is a cyclic vector for P; one way to see this is by direct calculation of 
o . . . . 0 1 
0 . . . 0 1 * 
0 . . 0 1 * * 

[dPd  p2d ... P"- 'dl  = , 

0 1 * * * * * 
I * * * * * * 

which is nonsingular. Existence of a cyclic vector for a matrix is a similarity 
invariant. If A is similar to P and TAT-' = P,  then A has a cyclic vector given by 
T -  ' d .  

The next proposition gives a useful condition that is equivalent to similarity 
between A and P. 

Proposition 1. [6, Theorem 3.3.151 The matrix A is similar to the companion matrix 
P of its characteristic polynomial if and only if the minimal and characteristic 
polynomials of A are identical. 
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Proofi Similar matrices have the same characteristic polynomial and minimal 
polynomial, and the minimal polynomial of a companion matrix P is the same as 
its characteristic polynomial [6, pp. 146-1471. Thus, if A is similar to P, then the 
minimal polynomial and the characteristic polynomial of A must be identical. 

On the other hand, if the minimal polynomial and characteristic polynomial of 
A are identical, then the Jordan canonical 'form of A must contain exactly one 
Jordan block for each distinct eigenvalue; the size of each Jordan block is equal to 
the multiplicity of the corresponding eigenvalue as a zero of the characteristic 
(minimal) polynomial of A.  In this case, the Jordan canonical form of the 
companion matrix P has the same Jordan block structure as A ,  and hence it must 
be similar to A .  Thus, A must be similar to P. 

Proposition 1 makes it easy to construct examples of matrices that have (or do 
not have) cyclic vectors. The similarity condition holds in Examples 1 and 2, where 
the characteristic (and minimal) polynomial for A is h(h + 3). We conclude that 
there is some other obstruction in Example 2 to an equivalence with system (2), 
and the obstruction must involve the b vector. Thus, the problem with transform-
ing Example 2 is related to the way the forcing function u enters the equations. 
We pursue this observation in Section 4. 

3.2 Uniqueness of the Transformation T .  Assume that we have a nonsingular T 
such that TAT-' = P and Tb = d. Then TAT-ld = TAb, and T A ~ ~= T A ~ T - ' ~= 

(TAT-')" = pkd for all k 2 0. Nonsingularity of T implies that 

n = rank [ d  Pd P2d ... P f l l d ]= rank [ b  Ab ~ ' b... ~ " - l b ]  

Moreover, T is uniquely determined by its action on the basis defined by the 
vectors b, Ab, . . .,~ " - l b .Thus, we have the following uniqueness result and 
necessary condition. 

Proposition 2. There is at most one nonsingular linear transformation, z = Tx, taking 
( 5 )  to the companion form (2). Such a T exists only if 

rank[b  Ab . . .A n - l b ]  = n .  ( lo)  

Example 2 is explained by this result, because in that example we have 

We return to Example 2 later for additional insight. Proposition 2 also explains 
why we cannot get a second order equation (1) for the variable x ,  in Example 1: 
the second order equation for y = z ,  must be a unique linear combination of the 
components of x. 

We now show that the criterion (10) is sufficient for there to be a nonsingular 
linear transformation T from ( 5 )  to (2). We also show how to construct T by a 
simple direct method. 

3.3 The Rank Condition (10) is Sufficient for Equivalence. Referring back to 
Example 1, the key in transforming (5) to (2) is to identify the variable z ,  that 
satisfies an equivalent n-th order equation (1). Note that z ,  = (first row of T )  .x.  
Let 7 denote the first row of T .  Since Tb = d = [O 0 . .  . 0  1ITand T A ~ ~= pkd,  we 
must have ~ + b= 0, reAb = 0, .  ..,T . A " - ~ ~= 0, and ? . A n - l b  = 1. Write this as 

~ [ bA b . .  .A n - l b ]  = [O.. . 0  11 = dT.  (11) 
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Now if we assume rank [b Ab . . . An- 'b]  = n, there is a unique solution for r in 
(11). (Again, the crucial z, variable must be a unique linear combination of the x 
components.) What about the rest of T?  The form of the companion system 
requires that 

z, = (second row of T ) x  = z', = r ' x '  = T .  ( A x  + bu) = r A x  + T ~ U= T A X ;  

therefore the second row of T is rA. Confinuing in this way, the equations 
defining T and the form of the z system imply that 

We combine this argument with Proposition 2 as follows. 

Theorem 1. The system x' =Ax  + bu(t) with x E Rn can be transformed to the 
companion system, z' = Pz + du(t), by a nonsingular linear transformation, z = Tx, 
if and only if rank [b Ab . . . A"-'b] = n; in this case, T is uniquely defined by (12), 
where T is the unique solution of (11). 

Theorem 1 answers our original question. If the basic algebraic fact concerning 
the existence of a cyclic vector for the companion matrix of A is understood, then 
the situation regarding equivalence between ( 5 ) and (2) becomes transparent. 

Our original question got us to this point. But there is much more involved here, 
if we re-examine things. Think about varying the nonhomogeneous term in (5). 
What if we apply different input functions u(t)? To what extent can this affect the 
solutions of the system? 

We consider the question of varying the input u(t) in the next section. By doing 
so, we obtain an analytic, control-theoretic meaning of the rank condition in 
Theorem 1. 

4. CONTROLLABILITY. System (5) is often called a single-input system because 
the input function u is scalar-valued rather than vector-valued. We show in this 
section that a natural concept of controllability for the single-input system (5) 
coincides with b being a cyclic vector for A. 

In an elementary differential equations course the nonhomogeneous term in (1) 
is considered to be a fixed, specified function of t. But we now ask: What happens 
with the system dynamics as we change u? More specifically, to what extent can 
the motion of the state vector x(t) be influenced, starting from an initial state x, 
and using fairly arbitrary inputs, u(t)? The next definition describes a concept of 
complete controllability of the state. Before stating this definition, we should 
specify a set %! of admissible input functions. The solutions of linear constant 
coefficient systems of differential equations are defined on the entire real line, and 
generally we want the same property for the inputs. However, for some questions, 
the inputs are restricted to an interval [t, '. t 1. Thus, with an appropriate restriction 

f
of domain when necessary, we could consider several vector spaces of functions for 
the set Y,including piecewise constant, continuous, or locally integrable inputs. 
A real-valued function u(t) is locally integrable if 
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for each t, < t,. The set of locally integrable functions is the largest vector space 
of inputs for which (13) makes sense; therefore we assume our inputs are locally 
integrable. 

Definition 3. The linear system (5) is completely controllable if, given any x,, 
xf E R", there exists a tf > 0 and a control function u(t), defined for 0 5 t Itf, 
such that the solution to (5) with initial condition x(0) = x, satisfies x(tf) = xf. 

The solution of (5) with x(0) = x, is 

where 

By the Weierstrass M-test, this series is absolutely and uniformly convergent for 
It1 Itf for any finite tf [lo, pp. 134-1351. The linear system (5) is completely 
controllable if for any given x,, xf there is some tf and some locally integrable 
function u on 0 5 t 5 tf such that 

It may be surprising that the solvability of (14) for arbitrary x,, xf is determined by 
a purely algebraic criterion; the explanation lies with the Cayley-Hamilton Theo- 
rem: the matrixA satisfies p(A)  = 0, where p(A) is the characteristic polynomial 
ofA. The rank condition (10) is known as the controllability rank condition, and the 
matrix [b  Ab . . . An-' b] is called the controllability matrix, because of the next 
theorem. 

Theorem 2. The linear system x' = Ax + bu(t) in (5) is completely controllable if and 
only if rank [b A b . .  .An-'b] = n. 

Proof: By the Cayley-Hamilton theorem, for each k 2 n, can be expressed as a 
linear combination of the powers A, A2 , .  . .,All-' . Let 9' denote the column 
space (range) of [b Ab . . . AnP1b].  From the definition of the matrix exponential 
and the fact that 9' is a closed subspace of Rn,we can conclude that the range of 
e-"b must lie in 9for every s. Thus, the integral on the right side of (13) must lie 
in 9' for all t. Take x, = 0, so the states that are reachable from the origin in 
finite time, by means of some input u(t), must all lie within 9'.Thus, if the rank 
condition does not hold, then the system is not completely controllable because 
there are states that cannot be reached from x,. This establishes the implication: 
complete controllability = rank[b Ab . . .A"-' b] = n. 

Conversely, suppose rank [b A b . .  .A"-' b] = n. We must now show that (5) is 
completely controllable. Choose any finite time tf > 0, and consider the symmetric 
n X n matrix 

M = ds,i t ' e s " b b ~ e e s ~ T  

We first show that M is nonsingular, and then we show that nonsingularity of M 
implies complete controllability. So suppose that Mu = 0 for some u;  then also 
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u T ~ v= 0 ,  and this implies that 

0 = u T ~ u= ~tfuTe-'4bbTe-s4\ds = / " ( 4 ( s ) ) '  ds,  
0 

where 4 ( s )  = uTe-sAb.Since ( + ( s ) ) ,  is continuous and nonnegative, we conclude 
that 4 ( s )  = 0.  It follows that 

4 ( O )  = uTb = 0 ,  @ ' ( 0 )= -u%b = 0 , .  . . , @ ( n - l )  ( 0 )  = *uTA"-I b = 0 .  

Therefore u is perpendicular to 9.By the rank assumption, we must have u = 0, 
and therefore M is nonsingular. Now take any two points x,, x f  in R", and de-
fine the control u ( s )  = bTe-""\ for 0 5 s 5 t f ,  where x remains to be chosen. 
The solution x ( t )  with input u and initial condition xo has final point x f  at time t f  
provided that x can be chosen so that 

But el fA is nonsingular because ( e l fA) - '  = e - ' fA ,  and M is nonsingular, so 
x = ~ - ' ( e - ' f ~ x ~- x,). Thus, any x ,  can be steered to any x f  in time t f ,  so the 
system is completely controllable. 

Our proof that the controllability rank condition is sufficient for complete 
controllability follows an argument in [9, pp. 167-1681 

Let us illustrate both Theorem 2 and the idea of controllability by re-examining 
Example 2. 

Example 3. (Example 2 continued) The system is 

Note that h = 0 is an eigenvalue of A, and b = [I  1IT is a corresponding 
eigenvector, so the controllability rank condition does not hold. However, A is 
similar to its companion matrix. Using the T computed before and z = Tx we have 
the system 

Differentiation of the z ,  equation and substitution produces a second order 
equation for z,:  

z ;  + 32; = 3u + u' ,  

which does not match (1 )  due to the u' term. One integration produces a first 
order equation 

z ;  + 32, = 3 u d s  + u ,1 
which shows that the action of arbitrary inputs u affects the dynamics in only a 
one-dimensional space. The original x equations might lead us to think that u can 
fully affect both x ,  and x,, but notice that the z ,  equation says that u has no 
affect on the dynamics of the difference x ,  - x ,  = 2 , .  Only when the initial 
condition for z involves z2(0)= 0 can u be used to control a trajectory. That is, 
the inputs completely control only the states that lie in the subspace span [ b  A b ]  = 

span { b }= span [I  1IT. Solutions starting with x,(O) = x,(O) satisfy x, ( t )  = x,(t)  = 

/duds + x,(O). One can steeE along the line x ,  = x ,  from any initial point to any 
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final point x l ( t f )= x , ( t f )  at any finite time t f  by appropriate choice of u( t ) .  On 
the other hand, if the initial condition lies off the line x ,  = x,, then the difference 
z ,  = x ,  - x ,  decays exponentially so there is no chance of steering to an arbitrarily 
given final state in finite time. 

When a system is completely controllable, there are generally many input 
functions that can implement the transfer fr'bm x ,  to x f .  This flexibility can be 
exploited in some applications to optimize the behavior of the system in some way, 
for example by minimizing a measure of the cost of carrying out the transfer. In 
particular, if the cost of the control action is measured by the integral 

then a control that minimizes this cost can be determined. For additional details 
on this problem for linear systems, see [I, pp. 102-1051. Optimal control theovy is 
concerned with optimizing various performance indices of systems such as (5). 

5. OBSERVABILITY AND DUALITY. Suppose we have a system ( 5 )  for which a 
certain linear combination of the state components x ,  is directly measured, 
perhaps by some combination of instruments. We write the system and its mea- 
sured output as 

x' = Ax + bu (15a> 

where c is a constant vector. The function y ( t )  is our known output. 
We now ask, when is cT the first row of a transformation T to the companion 

system ( 2 )where y is the dependent variable in ( I )?  If such a T exists, then T must 
have the form (12) with T = cT. We must also have Tb = d = [O . . . 0  1IT. Thus, 

In addition, since Tb = d ,  we have 

You can check that the differential equation for z = [ y  y' . . . y ( n l ) ] T  really is the 
companion form (2),  by remembering that A satisfies its own characteristic 
polynomial: A" + k , A ' 2 - 1  + ... + k ,,-,A + k, ,I  = 0. 

Proposition 3. There exists a nonsingular T transforming (15a) to companion form 
(2 ) with z ,  = y = cTx,  if and only zf the rank condition (16) holds and (17) is satisfied. 
In this case, T is uniquely determined and is the matrix in (16). 

Note that the matrix in (16)has the same rank as the matrix [ c A ~ c . ..( A T ) ' z - l ~ ] ,  
so that y = cTx satisfies ( 1 ) if and only if the system 

x' = A T x  + cu (18) 
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is completely controllable, by Theorem 2. Moreover, (17) shows that bT is the first 
row of the transformation that takes (18) to companion form. 

The connection of Proposition 3 with the system (18) leads to a fundamental 
duality between complete controllability and the concept of complete observability. 
The rank condition (16) is known as the observability rank condition and the matrix 

is called the observability matrix for the system (15). The rank condition implies 
that the system state x can be reconstructed from knowledge of y,  u ,  and their 
derivatives. Here is a basic definition. 

Definition 4. The system (15) is completely observable if, for any x, = x(O), there is 
a finite time t f  > 0 such that knowledge of the input u ( t )  and output y ( t )  on [O, t f ]  
suffices to determine x, uniquely. 

Definition 4 could be restated using only the zero input, u = 0. To see how a 
determination of x, is made when the observability rank condition holds, differen- 
tiate the output equation (1%) n - 1 times and set t = 0 to get 

Under the observability rank condition, the coefficient of x, is nonsingular, and 
we can solve for x, in terms of y and u and their derivatives. To illustrate, 
consider the system of Example 2 with output y = [ I  0]x. In this case, (20) gives 

Therefore the system is completely observable. 

Theorem 3. The system (15) is completely observable if and only if the obsermbility 
rank condition (16) holds. 

Proof: We have already shown the sufficiency of the rank condition (16). Now 
assume that complete observability holds; we must show that (16) holds. For the 
purpose of contradiction, suppose also that the observability matrix has deficient 
rank; then, there is a nonzero vector u such that 
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Now take x ,  = u and consider the output y = cTefAvusing input u = 0. Using 
(21) and the definition of the matrix exponential, the series expansion for y must 
have all coefficients equal to zero. Thus, y = 0; but this is also the output when 
x ,  = 0 under zero input. This contradicts the complete observability assumption. 

Motivated by the comments following Proposition 3, we define the dual system 
of (15) to be 

Then the dual of the dual of a system is the original system. With this definition 
we can encapsulate the discussion thus far with the following classical 
duality statement. 

Theorem 4. The system (15) is completely observable if  and only i f  the system (22a) is 
completely controllable. The system (15a) is completely controllable if and only if the 
dual system (22) is completely observable. 

6. FEEDBACK, STABILIZATION, OBSERVERS, AND DUALITY. A major theme 
in control theory is the use of feedback to modify the system dynamics to achieve 
some desired behavior, for example to stabilize an otherwise unstable equilibrium 
point. In this section we indicate some advantages of an equivalence with the 
companion system (2)with regard to these issues. We also present one additional 
consequence of duality. The considerations in this section help to indicate that 
much can be accomplished with the control of linear systems, and thus it is 
desirable to have an extension of the solution of the equivalence problem involving 
systems (2)  and (5)  to the case where (5)  is replaced by a single-input nonlinear 
system. 

Definition 5. The linear system x' = Ax is stable if all eigenvalues of A lie in the 
open left half-plane. 

From the theory of linear differential equations, it is known that all solutions 
x ( t )  - 0 as t - a if all the eigenvalues of A have negative real part. In this case, 
the equilibrium at the origin is asymptotically stable. 

Definition 6. In system ( 3 ,  linear state feedback is specified by u = Kx where K is 
a real 1 x n matrix. The corresponding closed loop system is x' = ( A  + bK)x.  

Consider the companion form (2). Using linear state feedback, u = Kx,  it is 
possible to assign eigenvalues arbitrarily to the resulting closed loop system, 
provided that the complex eigenvalues of A + bK occur in complex conjugate 
pairs. Specifically, by setting u = Kx = [ - a ,  - a,,-,. . . - a , ]x  in (2)we get the 
closed loop system z' = Pz, where P has the same form as P in (3)  except the 
last row is now [ - (k , ,  + a,,) - (k , - ,  + a ,  -,) . . .  - ( k ,  + a,)] .  Suppose that 
m,, m,,  . . . ,m,, are the desired coefficients of the characteristic polynomial of the 
closed loop, z' = I%. With the k i  known and the m i  specified, then cii = m i  - ki .  
Thus, the coefficients of the characteristic polynomial of A + bK may be chosen 
so that all its roots lie in the open left half plane. And the exponential rate of 
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convergence of z ( t )  to the origin can be increased, for example, by shifting the 
roots to the left in the complex plane. 

A system that is not stable might be made stable if modified by appropriate 
linear feedback. 

Definition 7. The linear system x' = A x  + bu( t )  is stabilizable if there exists a 
1 X n matrix K such that the linear system 'it= ( A  + b K ) x  is stable. 

Theorem 5. If x' = A x  + bu( t )  is completely controllable then it is stabilizable and 
the eigenvalues of x' = ( A  + b K ) x  can be assigned arbitrarily (provided that complex 
eigenvalues occur in conjugate pairs) by appropriate choice of K .  

Proof: We have discussed the proof only for the special case of a companion 
system. By complete controllability, there is a nonsingular T with z = Tx such 
that z' = TAT-'z + Tbu is a companion system. Therefore the eigenvalues of 
TAT-' + T ~ Kcan be assigned as described, where u = I& represents linear 
feedback for the companion system. Now the similarity 

shows that the eigenvalues of A + bK can be assigned by appropriate choice of 
feedback u = Kx. 

There is a concept dual to stabilizability that involves the state-to-output 
interaction of system (15). We give only a very brief discussion. 

Definition 8. System (15) is detectable if there exists an n x 1 matrix L such that 
the system x' = ( A  + L c T ) x  is stable. 

Forming the matrix A + LcT corresponds to output feedback given by u = Ly = 

LcTx.  The eigenvalues for A + L C ~are the same as those for AT + cLT, which 
corresponds to state feedback u = LT x in the dual system (22a). Thus a system is 
detectable i f  and only i f  the dual system is stabilizable. These are purely algebraic 
statements. An analytic interpretation of detectability derives from its implication 
that linear output feedback can be used to "detect" system trajectories asymp-
totically through a construction known as an observer system. Specifically, consider 
the system 

[ '  = A (  + Bu - ~ ( y- c T ( )  (23)  
where ( is an auxiliary state that can be initialized at any vector [(O). The auxiliary 
state ( is intended to approximate the true state x ,  and L ,  a so-called "output 
error" gain matrix, is to be chosen so that [ approximates x.  Define the error by 

e = x - [ .  

The objective is to choose L so that e + 0 as t + m. Now, subtraction of (23)from 
(15a) gives 

e' = ( A  + ~ c ~ ) e .  

Theorem 6. If the system (15) is detectable then L can be chosen in system (23) so 
that e = x - (+ 0 as t + m, independently of the initial condition [(O). 

Some comments on this construction are in order. The observer system (23) is 
an alternative to computing .the solutions of the system (15)with a direct numerical 
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method. By using the known data provided by A ,  b, and c, together with y and u ,  
syst'em (23) can be simulated numerically with a guarantee that the estimated state 
asymptotically reconstructs the true system state x for (13 ,  independently of the 
initial [(O). If we were so lucky as to have ((0) = x(O), then the observer equation 
(23) implies that [(t) = x(t) for all t, a perfect estimate. You can think of (23) as a 
system with inputs u and y, and with output [, the desired approximation. The 
estimate [ itself can be fed back to (15a), via u" = Kc,  in place of the true state for 
purposes of stabilization of (15a), provided that (15a) is stabilizable. In other 
words, the eigenvalues of the closed loop system can be placed somewhere within 
the left half-plane even though only the output y is measured. Moreover, an 
important feature of this construction is that the controller (that is, the matrix K )  
and the observer (essentially the matrix L )  can be designed independently while 
ensuring that the overall, interconnected observer/controller system is stable. To 
see this, use (15a) together with (23) to write the combined system for (x, 5) as 

We can obtain the characteristic polynomial for this system by using the following 
similarity transformation: 

Thus, the characteristic polynomial of the coefficient matrix in (24) is the product 
of the characteristic polynomials of A + bK and A + LcT. This means that K can 
be designed without regard to the fact that only state estimates will be fed back, 
and the observer error gain L can be designed without reference to the fact that 
the resulting state estimates are fed back for stabilization purposes. This indepen- 
dent design feature is often called the Separation Principle. 

Let us consider two examples illustrating stabilizability and detectability. 

Example 4. We return to Example 2 once more, and adjoin the output equation 
y = x,. Then the system coefficients are 

This system is both stabilizable and detectable, using the feedback matrix K and 
observer matrix L given by 

because A + bK then has eigenvalues -2, -3, and A + LcT has eigenvalues 
-2, - 1. Other choices for K and L are also possible. 

Example 5. Stabilizability and detectability are not guaranteed. Consider the 
linear system with coefficients 

In this case, any 1 x 2 feedback matrix K produces a closed loop matrix A + bK 
with zero as an eigenvalue; therefore, the system is not stabilizable. Also, any 
2 x 1 matrix L yields a matrix A + LcT with zero as an eigenvalue; therefore the 
system is not detectable. 
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7. A BRIEF NOTE ON EXTENSIONS. Let us briefly describe an extension of our 
discussion of the single-input systems in Sections 4-6 to the case of linear systems 
with multivariable input and output, 

x' =Ax + Bu(t)  (25a) 


y = c x ,  ,- (25'3) 

where u E Rm,  y E RP, and thus B is n x m and C is p x n. As noted before, 

the rank tests for controllability and observability allow for a statement of alge- 
braic duality between these concepts, once an appropriate dual system is identi- 
fied. The same principles extend to (25). 

Definition 3 (complete controllability) makes sense for the m-input case; the 
admissible control functions are Rm-valued functions u(t) such that every entry of 
u(t) is locally integrable. 

The characterization of complete controllability in Theorem 2 directly carries 
over to (2%) with no change in the statement. In this case, the controllability 
matrix [ B  AB . . . A"-'B] has size n X nm, and the proof proceeds as before from 
(13). With careful attention to the dimensions involved, the same proof carries 
through; the M matrix is still n x n while 4 is 1 x m. 

Complete observability of the system (25) is defined exactly as in Definition 4, 
and the system (25) is completely observable if and only if the observability matrix, 

which is now pn X n, has rank n. One checks that the proof of Theorem 3 carries 
through as before. 

The dual system of (25) is defined by 

x' =A ~ X+ c T u ( t )  ( 2 6 4  
y = B ~ X ,  (26b) 

with matrix dimensions determined, of course, by (25). Theorem 4, which docu- 
ments the algebraic duality of complete observability and complete controllability, 
is also valid when applied to (25) and its dual system. 

The extension of Theorem 5 to the case of m-input controllable systems can be 
based on the single-input result: see [13, pp. 49 - 511 for an accessible proof that 
essentially reduces the m-input case to the single-input case. 

Definition 7 and Definition 8 have straightforward extensions to the m-input 
and p-output cases. Theorem 6 on observer construction is easily seen to extend to 
(25); the extension is essentially notational. 

Once we move to linear systems with time-dependent coefficient matrices, 
additional technical issues arise in any extension of observability, controllability, 
and their duality, although several extensions have been accomplished. For exam- 
ple, several useful definitions of controllability for time-varying systems are possi- 
ble, all of which coalesce in the linear constant coefficient case to describe the 
same concept. These definitions may involve the initial time to, the particular 
initial state xo considered, and the time interval over which control action is 
to take place. The reader interested in these issues is invited to explore the 
references. However, let us give one further example to illustrate that time-
varying systems require alternative approaches in order to describe controllability 
properties. 
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Example 6. [ l l ]  Consider the system 

The general solution is 

If b, and b, are constant, then Theorem 2 ensures that the system is completely 
controllable. Suppose now that b,(t) = e' and b2(t) = e2'; the solution is then 

Thus, solutions that start on the line x, = x, at t = 0 always satisfy the condition 
x2(t) = erx,(t), and from this condition we can conclude that the system is not 
completely controllable according to Definition 3, for if x,(O) = x,(O), then the 
motion is confined to the first or third quadrant since x, and x, must have the 
same sign. In particular, the set of points reachable from the origin lies within 
those two quadrants. If we consider the controllability rank condition in a point- 
wise manner, that is, if we consider the following matrix for each time instant t, 

we obtain a nonsingular matrix. This example shows that a point\l;ise interpretation 
of the controllability rank condition of Theorem 2 does not lead to a satisfactory 
criterion for complete controllability of a time-varying linear system. 

8. FURTHER READING. Three major themes in control theory (and in this 
article) involve (i) the input-to-state interaction: controllability, (ii) the state-to-out- 
put interaction: obseruability, and (iii) transitions between different representations 
of a dynamical system. We have tried to illustrate those themes in a discussion of 
an equivalence problem for single-input linear systems. 

Two comprehensive texts that focus on time-invariant linear systems are [7] and 
[91. For more on multivariable input and output, and time-varying linear systems, 
see [I], [2], [3], [ I l l ,  [12], and [13]. The linear algebra text [4] provides a mathemati- 
cian's view of some fundamental results of control-theoretic interest. The presenta- 
tion of linear control theory in [13] is nicely unified around the concept of invariant 
subspace. Additional perspective on linear systems theory from the mathematical 
point of view can be obtained from [5]. 
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