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PROBLEMS AND SOLUTIONS 


Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West 
with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, Ezra 
A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, Ira M. 
Gessel, Bart Goddard, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell, Robert Israel, Kiran 
S. Kedlaya, Murray S. Klarnkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni, Frank 
B. Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Srniley, John Henry Steelman, Kenneth Sto- 
larsky, Richard Stong, Charles Vanden Eynden, and William E. Watluns. 

Proposed problems and solutions should be sent in duplicate to the MONTHLY 
problems address on the inside front cover. Submitted problems should include 
solutions and relevant references. Submitted solutions should arrive at that address 
before March 31,2000; Additional information, such as generalizations and refer- 
ences, is welcome. The problem number and the solver's name and address should 
appear on each solution. An acknowledgement will be sent only i fa mailing label 
is provided. An asterisk (*) after the number of'a problem or a part o f  a problem 
indicates that no solution is currently available. 

PROBLEMS 

10753. Proposed by Louis Shupiro, Howard Universit!; Washi~zgton, DC. An ordered tree 
is a rooted tree in which the children of each node form a sequence as opposed to a set. The 
5 ordered trees with 3 edges are 

h 
The number of ordered trees with n edges is the nth Catalan number ( : ; ) / (n  + 1) .  Therefore, 

nodes. Prove 
that exactly half of these nodes are end-nodes (i.e., leaves with no children). 

10754. Proposed by Paul Bracken, UrziversitP de MontrPal, MolltrPal, PQ. Cut~ada. Let 
( ( s )  = xglk-,'. and let p ( s ,  n )  = k P S .Show that for positive integers s 2 2, 

10755. Proposed by Jiro Fukutc~, Mornsu-gun, Gifu-ken, Japurz. An arbitrary circle 0 is 
drawn through vertices B and D of a convex quadrilateral A B C D .  Let O 1  be the circle 
tangent to lines A B  and A D  and tangent to 0 internally at a point of 0 on the opposite 
side of line B  D  from A. Let 0 2  be the circle tangent to lines C B  and C D  and tangent to 
0 internally at a point of 0 on the opposite side of line B D from C .  Let R1 and R? be 
the radii of circles O1 and 0 2 ,  respectively, and let rl and r? be the radii of the incircles of 
triangles A  B  D  and C  B  D,  respectively. Prove that the quadrilateral A BCD is inscribable 
in a circle if and only if rl / R 1  + r 2 / R 2= 1 .  
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(':) edges, one draws a total of nif one draws each of the ordered trees with 
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