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10756. Proposed by Douglas Iannucci, University of the Virgin Islands, St. Thomas, VI. 
Prove that 

1 1+ &sin (-3 arccos -))
2 4 7  

10757. Proposed by Mark Kidwell, United States ,Naval Academy, Annapolis, MD. Given 
integers ao, a l ,  a2, . . . ,a, with ai # 0 for i 2 1 ,  write [ao; a1 , a2, . . . , a,] for the continued 
fraction 

1 

Every positive rational number has a unique representation as [ao; a l ,  a2, . . . , a,] if we re- 
quire that a0 > 0,ai > 0 for 1 < i 5 n - 1 ,  and a, > 1 (we call this the standard representa- 
tion),but it can have other representations [bo; b l ,  b2 ,  . . . , b,] if we permit negative values 
for some of the bi or if we permit b, = 1. For example, 1113 = [3;I ,  21 = [3;1 ,  1 ,  11 = 
[4;-31. Prove or disprove: If r is a positive rational number, r = [ao; a [ ,  a2, . . . ,a,] 
is the standard representation, and r = [bo; b l ,  b2 ,  . . . , b,] is another representation, then 
ao+al+. . .+a, 5 lbol+ Ibl I +.. . +lbm 1 ,  with strict inequality if any of the bi are negative. 

10758. Proposed by Mark Sapil; Vanderbilt University, Nashville, TN. Prove that the sum 
of the (decimal) digits of 9, cannot equal 9 when n > 2. 

10759. Proposed by Ca'lin Popescu, Universite' Catholique de Louvain, Louvain-la-Neuve, 
Belgium. In triangle A B C ,  let h ,  denote the altitude to the side BC and let r, denote the 
exradius relative to side B C ,  i.e., the radius of the circle tangent to the extensions of sides 
A B  and AC and to the side BC externally. Define hb, h,, rh, and r, correspondingly. Prove 
that h::r:: +h;r i  +h;r: 5 r:r; +r;r: +r:r: for any integer n ,  and determine conditions 
for equality. 

SOLUTIONS 

Common Eigenvector of Commuting Matrices 

10633 [1997,975]. Proposed by Kiran S. Kedlaya, Princeton University, Princeton, NJ. Let 
S be a commuting family of n-by-n matrices over an arbitrary field. Suppose the matrices 
in S have a common eigenvector v, so that Mv = hMu for all M E S. Prove that the 
transposes of these matrices also have a common eigenvector with these eigenvalues, that 
is, a vector w satisfying M ~ W= h ~ wfor all M E S.  

Solution by Alain Tissiel; Montmermeil, France. Let K be the field. Set @ (M) = M - hMI 
and @ ( S )  = {@ (M): M E S) .  Thus @ (S) is a commuting family of n x n matrices over 
K having a common nonzero vector v such that @(M)v = 0 for all @(M) E @(S). Since 
@ ( M ) ~= M~ - h M I ,  we have to prove only that the transposes of the matrices in @(S) 
have a common nonzero vector w satisfying @ ( M ) ~  = 0 for @(M) E @(S). Thus we w 
may suppose that h~ = 0 for every M .  

If all matrices in S are nilpotent, then the collection of transposes is also a commuting 
family of nilpotent matrices. In this case there is a nonzero vector w such that M ~ W= 0 for 
all M E S (section 3.3 of J. E. Humphreys, Introduction to Lie Algebras and Representation 
Theory, Springer-Verlag, 1972). So we may assume that not all elements of S are nilpotent. 

We proceed by induction on n: When n = 1 all the matrices are zero, so the conclusion 
is true. Taken > 1 ,  and suppose the result is true for h-by-h matrices for each h < n.  Let N 
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be a nonnilpotent element of S. Let W be the set of all vectors x such that N k x  = 0 for some 
k 2 0. By finite-dimensionality, there is a fixed k such that N k x  = 0 for all x E W. So 
v E W, W is a subspace, and K n  = W CB U ,where U is the range of the mapping x t+ N k x .  
Now if M E S,  then M commutes with N ,  and the descriptions of W and U show that they 
are invariant under M .  Let m be the dimension of W, let 23' be a basis of W, and let IB" be 
a basis of U .  For each M E S,  let M' be the 23'-representation of M restricted to W and let 
M" be the 'B1'-representation of M restricted to U .  Then there exists a nonsingular n x n 

matrix P such that P - ' M P  = for all M E S. Let S' be the set of the matrices [ ill] 
MI. Then S' is a family of m x m commuting matrices having a common nonzero vector 
v' such that M'v' = 0 for each M' E S'. By the induction hypothesis there exists a nonzero .. 

vector w' such that M ' ~ w '= 0 for each M' E S'. The vector (pT) - '  [UJb] solves the 

problem. 

Solved also by R.  J .  Chapman (U. K.), D. Huang, J. H. Lindsey 11, G. Sansigre Vidal (Spain), GCHQ Problems Group (U. K.), and 
the proposer. 

Reflected Concurrent Lines 

10637 [1998, 681. Proposed by C. E;: Parry, Exmouth, Devon, United Kingdom. Suppose 
triangle A BC has circumcircle r,circumcenter 0,and orthocenter H .  Parallel lines a ,  B, y 
are drawn through the vertices A, B ,  C ,  respectively. Let a ' ,  B', y' be the reflections of 
a ,  B, y in the sides B C ,  C A ,  A B ,  respectively. 
(a ) Show that a ' ,  B', y' are concurrent if and only if a ,  /?I, y are parallel to the Euler line 
OH.  
(b) Suppose that a ' ,  B', y' are concurrent at the point P .  Show that r bisects 0P .  

Solution by Robert L. Young, Ostewille, MA. Take r to be the unit circle = 1 in the 
complex plane and rotate ABC about 0 so that arg H = 0. Assume H # 0 for now, so the 
Euler line exists and is the real axis. Choose 83 > 62 > 61 > 0 so that A = eiel,B = eiQ2, 
and C = e i 4 ,  and let M = eie ,where 8 E [0,n) is the angle of inclination of the lines a ,  

B 3  Y. 
(a )The reflection z' of a complex number z through the line containing B and C is determined 
as follows. Apply the linear transformation t ( z )  = ( z  - B )  ( C  - B ) , which takes B and C 
and therefore the line B C  to the real axis. Since reflection in the real axis is conjugation, 

-1 - ( z - B ) ( C - B )  BC
z l = t  ( t ( ~ ) ) =  - + B = - B C z + B + C ,

( C - B )  BC 

and the reflection of A through line BC is 

Any z # A' on a' satisfies the equation 

Since the perpendicular bisector of line BC passes through 0 and exp(i(82 + 03) /2 ) ,we 
have arg(C - B )  = (62 +63)/2-n / 2  modulo n. By the definition of a',  arga' + arg a = 
2arg(C - B )  - 62 + O3 - n modulo 2 n ,  so e2iaxa' = ei(2e2+203-2e)= B2C2;ii-2. 

Substituting (1) into (2) ,we conclude that a' has equation 
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