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be a nonnilpotent element of S. Let W be the set of all vectors x such that N k x  = 0 for some 
k 3 0. By finite-dimensionality, there is a fixed k such that N k x  = 0 for all x E W. So 
v E W, W is a subspace, and K n  = W CB U ,where U is the range of the mapping x t+ N k x .  
Now if M E S,  then M commutes with N ,  and the descriptions of W and U show that they 
are invariant under M .  Let m be the dimension of W, let 23' be a basis of W, and let IB" be 
a basis of U .  For each M E S,  let M' be the 23'-representation of M restricted to W and let 
M" be the 'B1'-representation of M restricted to U .  Then there exists a nonsingular n x n 

matrix P such that P - ' M P  = for all M E S. Let S' be the set of the matrices [ ill] 
MI. Then S' is a family of m x m commuting matrices having a common nonzero vector 
v' such that M'v' = 0 for each M' E S'. By the induction hypothesis there exists a nonzero .. 

vector w' such that M ' ~ w '= 0 for each M' E S'. The vector (pT) - '  [UJb] solves the 

problem. 

Solved also by R.  J .  Chapman (U. K.), D. Huang, J. H. Lindsey 11, G. Sansigre Vidal (Spain), GCHQ Problems Group (U. K.), and 
the proposer. 

Reflected Concurrent Lines 

10637 [1998, 681. Proposed by C. E;: Parry, Exmouth, Devon, United Kingdom. Suppose 
triangle A BC has circumcircle r,circumcenter 0,and orthocenter H .  Parallel lines a ,  B, y 
are drawn through the vertices A, B ,  C ,  respectively. Let a ' ,  B', y' be the reflections of 
a ,  B, y in the sides B C ,  C A ,  A B ,  respectively. 
(a ) Show that a ' ,  B', y' are concurrent if and only if a ,  /?I, y are parallel to the Euler line 
OH.  
(b) Suppose that a ' ,  B', y' are concurrent at the point P .  Show that r bisects 0P .  

Solution by Robert L. Young, Ostewille, MA. Take r to be the unit circle = 1 in the 
complex plane and rotate ABC about 0 so that arg H = 0. Assume H # 0 for now, so the 
Euler line exists and is the real axis. Choose 83 > 62 > 61 > 0 so that A = eiel,B = eiQ2, 
and C = e i 4 ,  and let M = eie ,where 8 E [0,n) is the angle of inclination of the lines a ,  

B 3  Y. 
(a )The reflection z' of a complex number z through the line containing B and C is determined 
as follows. Apply the linear transformation t ( z )  = ( z  - B )  ( C  - B ) , which takes B and C 
and therefore the line B C  to the real axis. Since reflection in the real axis is conjugation, 

-1 - ( z - B ) ( C - B )  BC
z l = t  ( t ( ~ ) ) =  - + B = - B C z + B + C ,

( C - B )  BC 

and the reflection of A through line BC is 

Any z # A' on a' satisfies the equation 

Since the perpendicular bisector of line BC passes through 0 and exp(i(82 + 03) /2 ) ,we 
have arg(C - B )  = (62 +63)/2-n / 2  modulo n. By the definition of a',  arga' + arg a = 
2arg(C - B )  - 62 + O3 - n modulo 2 n ,  so e2iaxa' = ei(2e2+203-2e)= B2C2;ii-2. 

Substituting (1) into (2) ,we conclude that a' has equation 
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It is convenient to note that A + B + C = H and is therefore real and to write K = A B C ,  
so that A B + BC + C A  = K H = K H .  With this notation, the equation becomes 

z = z 2 l Y 2 x 2 ( ? +  ( A  - C - B)BC)+ ( A B + AC - orB C ) ~ ,  

z =  K ( v ~ K ? - ~ ) x ~ - ( M ~ -I ) K H ~ + ~ % ~ K .  

Similarly, the equation of Br is 

Let zc denote point of intersection, if any, of a' and B' and similarly for Z A  and ZB. 

Solving for zc from these two equations, we get K ( M 2 K F- 2 ) x 2- (M2 
- 1 )K H Ti = 

K P2
-B

-2K ( M ~ K ~ - ~ ) ~ ~ - ( M ~ - ~ ) K H , ~ o) p 2 K F - 2 )  = (;i-q(M2-I)KH, 
and 

p 2 K F -  2 ) P + Z )  = 1 ) ~ .(z2-
Similarly, 

2 - 2 -
Supposear,Br,  yrareconcurrentatP.  Then P+B)(MK P - 2 ) ,  (B+q(M K P - 2 ) ,  

and + (M2 K -P - 2 )  all equal ( M 2- 1 )H .  Multiply the first of these equations by 
- 2 
B +C,multiply the second by 2+B, and then subtract to obtain 0 = (M - 1 )H P -q. 
Since A # C and H # 0 , we have M 2  = 1 and 0 = 0.  So a ,  B, y are parallel to the Euler 
line as claimed. Conversely, if a ,  B, y are parallel to the Euler line, then M 2  = 1 ,  and 
z A  = z B  = zc = P = 2K satisfy the equations for a',  B', y', so these are concurrent. 

If H = 0 , there is no Euler line. In this case, a', Br, and y' concur at P = 2K z2. 
(b) Since P = 2K = 2 A B C , we have [PI = 2. Therefore I(O + P)/21 = 1 and (0+P ) / 2  
is on r. 
Solved also by J. Anglesio (France), M. Benedicty, N.Lakshmanan, and V. Schindler (Gemany). 

A Constrained Maximization 

10646 [1998, 1761. Proposed by Hassan Ali Shah Ali, Teheran, Iran. Find the maximum 
of ny=l ( 1  - x i )  over all nonnegative xl ,x2, . . . ,x, with Cy=l xi2 = 1. 

Solution by Patrick A. Staley, Southwestern College, Chula Vista, CA. When n = 1 ,  the 
constraint requires xl = 1 ,  and the maximum value is 0.  So assume n 2 2. We show that 
the maximum is 312 - l /Z % 0.0858, and it occurs when two of the xi ' s  are l / l / Z  and the 
others are 0. 

Let xl ,x2, . . . ,x, be an optimal solution. If x and y are any two of the xi's, then they 
satisfy a two-element subproblem: maximize ( 1  - x ) ( l  - y )  under the constraints x > 0, 
y 2 0 , and x2+ y2  = k2 for agiven positive k 5 1. To solve this, note thatdyldx = - x / y ,  
SO 

d ( ( 1- x ) ( l  - Y ) )  = - ( 1  - y )  - ( 1  - x ) -dy 
= 

( x  - y ) ( l  - x - Y )  

d x  dx Y 

If this vanishes, then ( x  + y - l ) ( x- y )  = 0.  There are three possibilities for the global 
maximum of ( 1  - x ) ( l  - y):  
(1 )endpoints, x = 0 ,  y = k (or vice versa), so ( 1  - x ) ( l  - y )  = ( 1  - k ) ;  
(2)y = x ,  s o x  = y = k / l / Z ,  ( 1  - x ) ( l  - y )  = ( 1  - k ~ l / Z ) ~ ;or 
(3)y = 1 - x ,  s o x ,  y = ( 1  f.2/-)/2 and ( 1  - x ) ( l  - y )  = ( 1  - k2) /2 .  

Case (3 )may be discarded, since ( 1  -k 2 ) / 25 ( 1  -k ) for all k. If k < 2(2/2- 1 )  % 0.828 

then case (1 ) is maximal; otherwise, case (2) is maximal. 
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