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REVIEWS 

Edited by Harold P. Boas 

Mathematics Department, Texas A & M Uniuersity, College Station, TX 77843-3368 

The Four-Color Theorem. By Rudolf Fritsch and Gerda Fritsch, translated from the 
German by J. Peschke. Springer-Verlag, 1998, xvi + 260 pp., $29.95. 

Reviewed by John A. Koch 

This book "has been written to explain the Four Color Theorem to a lay 
readership," and, for the most part, it succeeds. The highest praise I can give such 
an effort is that I learned from it both bits of history and developments that have 
occurred since I was involved [2] in the solution of the problem in 1976. The book 
begins with a review of the historical foundations of the theorem and ends with a 
reference to a website [S] that displays the recent work of Robertson, Sanders, 
Seymour, and Thomas. 

The Four Color Theorem has generated interest among mathematicians and 
non-mathematicians alike: "The regions of every planar map can be colored using 
no more than four colors such that those regions that are adjacent have different 
colors." Most amateur investigators immediately conjure up regions shaped like 
the spokes in a wheel. The requirement that adjacent regions touch at more than a 
single point is necessary for a meaningful theorem. 

The historical section begins with the origin of the theorem in an observation of 
Francis Guthrie, whose younger brother Frederick submitted the problem to his 
professor Augustus de Morgan in 1852. Alfred Kempe appeared to have solved the 
problem in 1879 when he published his paper in the American Journal of Mathe- 
matics Pure and Applied. It is an interesting sidelight how Kempe, a lawyer and an 
Englishman, came to submit to this American publication, at the time a "compara- 
tively insignificant" journal. In 1890, Percy Heawood identified an error in Kempe's 
proof. However, Kempe's arguments do yield a relatively simple proof of the Five 
Color Theorem. 

The Fritsches particularly highlight the German connection to the theorem. The 
important efforts of Heinrich Heesch and Karl Durre led to Wolfgang Haken's 
involvement, and the interplay between these three and Ken Appel resulted in the 
unavoidable sets being winnowed down from one million elements to fewer than 
2000. Most of the researchers in the Four Color field were aware of what the 
others were doing; I recall Appel relating that he and Haken stopped work on 
their approach in 1970 to investigate Shimamoto's supposed proof. 

To prove the Four Color Theorem, one first translates it into an equivalent 
problem about graphs. The proof then breaks down into two major components: 
first the generation of an unavoidable set of configurations, and then the demon- 
stration that no element of the unavoidable set can be in a minimal counter- 
example to the theorem. 

One unavoidable configuration can easily be derived from Euler's formula 
relating the number of faces f ,  vertices u, and edges e of a graph: 

u - e + f = 2 .  (1) 
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Since each edge borders two faces, and each face is surrounded by at least three 
edges, it follows that 3f r 2e, so that 

This inequality together with (1) yields u - e + 2e/3 2 2, which implies 
3 u - e r 6 , o r  

e I3u - 6, (3) 
Consequently, there must be a vertex with degree less than or equal to 5 in a 

connected, planar graph with no self-loops. Indeed, suppose that all the vertices of 
a graph had degree greater than 5. Adding the degrees of the vertices would show 
that 2e r 6u, or e r 3u, which would contradict (3). Thus, there must be a vertex 
of degree 1, 2, 3, 4, or 5 in any planar graph with no self-loops: this is the 
unavoidable set that Kempe used in his failed proof of the Four Color Theorem. 

If there is a counterexample to the Four Color Theorem, then there is one with 
a minimal number of vertices, obviously at least five. The second part of the proof 
is to show that every element (called a configuration) of the unavoidable set is 
reducible, that is, cannot be in a minimal counterexample to the theorem. 

Kempe attempted to show that a degree 5 vertex is reducible by using a process 
that became known as "Kempe chaining." The flaw Heawood noted was that 
Kempe changed the colors of two chains simultaneously. 

The process of showing that a configuration f is reducible begins with assuming 
that f is embedded in a minimal counterexample to the Four Color Theorem. One 
removes f ,  yielding a smaller graph. Since the original graph was assumed to be a 
minimal counterexample, the smaller graph can be colored with four colors. Now 
replace f in the graph and try to extend the existing coloration of the ring 
surrounding f into the interior vertices. If this can be done for an arbitrary 
coloration of the ring, then f is called A-reducible. 

Other types of reducible configurations allow one to examine fewer ring 
colorations: B-reductions involve merging ring vertices (thus causing their colors to 
be the same) or adding edges between ring vertices (thus causing their colors to be 
different), while C and D reductions involve replacing the original configuration 
with a configuration containing fewer vertices (so that the whole graph can be four 
colored) and examining the resulting possible ring colorations. Such reducers 
decrease the total possible number of ring colorations that must be examined. This 
becomes critical when one considers the combinatorial explosion in possible 
unique ring colorations: 

ring size colorations 
10 2,461 
11 7,381 
12 22,144 
13 66,430 
14 199,291 
15 597,872 

After their historical discussion, the Fritsches begin with topological maps in 
Chapter 2. At the start of a section that proves lemmas concerning simple curves 
and the Jordan curve theorem, they state: "It must, however, be emphasized that 
many seemingly self-evident statements and theorems are sometimes difficult to 
prove rigorously." Chapter 3 provides the topological version of the Four Color 
Theorem. The terms regular map, vertex degree, circuit, and border vertex are 
defined, and lemmas are proved about the amusingly named "minimal criminal," 
which is a postulated minimal.counterexample to the Four Color Theorem. 
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The authors take the combinatorial approach in Chapter 4, where they prove 
the duality of maps and graphs. The usual transformation is to consider a point as 
the capital of a region. These capital points (vertices) are joined by lines to capitals 
in adjacent countries. Thus, the problem becomes to color the vertices of a planar 
graph in such a way that adjacent vertices have different colors. This is the 
formulation of the problem that Appel, Haken, and I worked with most closely. 
The authors prove the Five Color Theorem in this chapter. 

Chapter 5 discusses the combinatorics of the graphical version of the theorem. 
At the end of the chapter, the authors give the necessary definitions of reducible 
configuration and unavoidable set. Up to this point, they have proved most of the 
lemmas. In the remaining 70 pages, they describe the four types of reductions 
(A,  B, C, and D )  with detailed examples. They even list Durre's program written 
in Algol, with German comments. 

The final 11pages discuss general principles involved in the massive process of 
determining the unavoidable set. This process is described through obstructions in 
configurations, some "rules of thumb," and "geographical goodness." 

An interesting aspect of the proof is that there is not a single unique unavoid- 
able set. In fact, as the original proof developed, certain configurations that were 
found too difficult to reduce were replaced by others. The unavoidable set in the 
original paper consists of 1476 configurations. The proof of Robertson, Sanders, 
Seymour, and Thomas [4] uses 633 configurations, and it trims the number of 
discharging rules from more than 300 to only 32. Despite the improvement in the 
proof, it has not been reduced to a simple enough process to satisfy all mathemati- 
cians (or even all non-mathematicians). The proof still involves enough computer 
calculation that one cannot verify the result by hand. 

The possibility of an error in the computer programs troubles some people. 
However, there are several parameters that come out of the reduction process, and 
others who have written programs to reduce configurations have achieved the 
same parameters for the same configurations. The situation is analogous to solving 
a riddle: once you know the answer, it seems trivial; but to find the solution may 
involve many exhaustive trials. 

This book would be excellent for college students involved in topics courses or 
senior projects. The beginning basics are described in detail. Although there is a 
definite lack of information about the discharging procedures used to develop the 
unavoidable set, there is a useful bibliography and enough leads to keep good 
mathematics students busy. 

REFERENCES 

1. 	 K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J .  Math. 21 
(1977) 429-490. 

2. 	 K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. 11. Reducibility, Illinois J .  
Math. 21 (1977) 491-567. 

3. 	 Kenneth Appel and Wolfgang Haken, with the collaboration of J. Koch, Every plntzar map is four 
colornble, American Mathematical Society, Providence, RI, 1989. 

4. 	 Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas, The four-colour theorem, 
J .  Conzbin. Theory Ser. B 70 (1997) 2-44. 

5. 	 Robin Thomas, The Four Color Theorem, 
http://www.math.gatech.edu/-thomas/FC/fourcolor.html 


Comp~lterSc~ence Department, Wilkes University, Wilkes-Barre, PA 18766 
lzocl~@matlzcs.willces. edu 

October 19991 	 REVIEWS 

http://www.math.gatech.edu/-thomas/FC/
mailto:lzocl~@matlzcs

