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Multivariable Calculus and the Plus Topology 


Daniel J. Velleman 

Among the most subtle concepts in multivariable calculus are the concepts of 
continuity and differentiability of functions of two (or more) variables. These 
concepts are designed to tell us about the local behavior of a function near a point. 
Since "local" is defined by reference to the standard topology on R2, the 
definitions of continuity and differentiability must take into account the fact that a 
neighborhood of a point in this topology includes nearby points in all directions, 
not just the coordinate directions. As a result, these definitions involve limits in 
which a point (x, y) approaches a point (a, b), and such limits cannot be under- 
stood in terms of limits in which the variables x and y approach the limits a and b 
separately. This explains why, for example, differentiability of a function of two 
variables is not the same as existence of the two first partial derivatives. 

But now suppose we are interested in studying the partial derivatives of a 
function. Since the partial derivatives are defined in terms of limits with respect to 
the independent variables separately, they cannot be thought of as giving us 
information about the local behavior of the function near a point-at least, not if 
"local" is defined by reference to the standard topology. But what if we use a 
different topology? Is there some topology on R2 that is appropriate for the study 
of partial derivatives, in the same way that the standard topology is appropriate for 
the study of continuity and differentiability? My purpose in this paper is to show 
that there is such a topology, and that the study of this topology can shed light on 
some of the subtleties of multivariable calculus. 

The standard topology on R2 is defined by reference to &-balls, where for any 
E > 0 and any point (a ,  b) E R2, the &-ball centered at (a ,  b) is defined to be the 
set 

B,(a. b) = ( ( x ,  y )  E R'I J (x  - a): + ( 9  - b)' < & ) -

We define the &-plus centered at (a,  b) to be the set 

Of course, the reason for the name is that the set +,(a, b? looks like a plus sign 
centered at (a, b), with "radius" F ;  see Figure 1. We say that a set U c R2 is 
plus-open if for every (a, b) E U there is some E > 0 such that +,(a, b? c U. It is 
easy to verify that the plus-open sets form a topology on R2, which we will call the 
plus topology. Clearly every open set is plus-open, but there are plus-open sets that 
are not open. For example, the set 

is plus-open, but it is not open because it contains no &-ball centered at (0,O); see 
Figure 2. Thus, the plus topology is strictly finer than the standard topology. 

As evidence that the plus topology is the right topology for studying concepts 
involving limits with respect to the independent variables separately, we offer the 
following theorem. The theorem concerns separately continuous functions, where 
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Figure 1. The sets BJa ,  b )  and +,(a, b). Figure 2. The set A. 

a function f with domain R2 is called separately continuous if for every b E R, the 
function f(x, b) is a continuous function of x, and for every a E R, the function 
f(a ,  y) is a continuous function of y. 

Theorem 1. For every topological space Y and eve? function f :  R2 + Y, f is 
separately continuous if and only if it is continuous with respect to the plus topology on 
R ~ .Furthermore, the plus topology is the only topology for which this is true. 

Proofi Suppose that f is separately continuous, and let V G Y be open. Suppose 
(a, b) E f-'(V). Then f(a,  b) E V, so since the function f(x, b) is continuous, 
there is some > 0 such that if Ix - a 1 < E, then f(x, b) E V. Similarly, there is 
some s2> 0 such that if y - bl < E, then f(a,  y) E V. Clearly +, (a, b) c f-'(V), 
where E = min(s,, c2). Thus f - l ( v )  is plus-open, so f is continuous with respect 
to the plus topology. 

Now suppose that f is continuous with respect to the plus topology. 
Suppose that (a, b) E R2, and let V be any neighborhood of f (a ,  b) in Y. Then 
(a ,  b) E f-'(V) and f-'(V) is plus-open, so there is some E > 0 such that 
+,(a, b) c,f- '(V). It follows that if Ix - a1 < E then f(x, b) E V, and if 
ly - bl < E then f(a,  y) E V. Since V was arbitrary, this shows that the function 

f(x, b) is continuous at x = a and the function f(a ,  y) is continuous at y = b. 
Thus, f is separately continuous. 

Finally, to prove uniqueness, suppose that T is another topology on R2 with the 
property stated in the theorem. Let Y be R2 with the plus topology, and let 
f :  R2 + Y be the identity function. The f is clearly continuous with respect to the 
plus topology on the domain, so by the part of the theorem already proved, f must 
be separately continuous. Thus, f is continuous with respect to the topology T on 
the domain. In other words, for every plus-open set U, U = f- '(u) E T, so T is at 
least as fine as the plus topology. Similar reasoning, with the roles of T and the 
plus topology reversed, shows that the plus topology is at least as fine as T, so T 
must be the plus topology. 

The plus topology is actually a special case of a kind of product topology that 
has appeared occasionally in the topology literature; see [2] and [3]. There are also 
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related topologies on R2 that can be used to study continuity and directional 
derivatives in directions other than the directions of the coordinate axes. However, 
in this paper we restrict our attention to the plus topology on R2. 

Corresponding to the fact that all differentiable functions are continuous, we 
have the following corollary of Theorem 1: 

Corollary 2. Suppose f :  R2 + R. If the partial derivativesf, and f, are defined 
eueiywhere, then f is continuous with respect to the plus topology on the domain R2. 

Proof: If f, and f, are defined everywhere then f must be separately continuous, 
so the conclusion follows from Theorem 1. 

Since partial derivatives are defined using limits with respect to the independent 
variables separately, the first partial derivatives of a function f at a point (a,  b) can 
be computed from the values of f at all points in any &-pluscentered at (a,  b). 
Applying this fact at every point in a plus-open set proves our next theorem. 

Theorem 3. Suppose that f ,g :  R2 + R, U is a plus-open set, and for all (a, b) E U, 
f(a, b) = g(a, b). Then for all (a, b) E U, f,(a, b) = g,(a, b) andf,(a ,  b) = g,(a, b), 
where each equation should be interpreted as meaning that either both partial deriua-
tives are undefined, or both are defined and they are equal. 

Mixed higher order partial derivatives of a function f at a point (a,  b) cannot be 
computed from the values of f on an &-pluscentered at (a,  b). However, applying 
Theorem 3 repeatedly leads to the following corollary: 

Corollary 4. Suppose that f ,  g: R2 + R, U is a plus-open set, and for all (a, b) E U, 
f(a, b) = g(a, b). Then all partial derivatives (including all mixed partials) off and g 
agree at all points in U. 

For example, consider the following two functions: 

x 2 + y 2  i f ( x , y ) ~ A  
g ( x ,  y )  = x 2  + y 2 ,

if ( x ,  y )  E A 
(1) 

where A is the plus-open set in Figure 2; see Figures 3 and 4. These functions 
agree at all points in A, so by Corollary 4 their partial derivatives of all orders also 
agree at all points in A. In particular, all partial derivatives of f and g agree at 
(0,O). We might say that the partial derivatives at (0,O) look at points only in a 
plus-open neighborhood of (0,0), and therefore they don't see the difference 
between f and g. But the local (in the sense of the standard topology) behavior of 
these functions is quite different near (0,O). For example, g is differentiable at 
(0, O), and f is not even continuous there. This illustrates the point that partial 
derivatives of a function do not give information about its local behavior. 

This example also makes it clear that it is impossible to tell whether or not a 
function is differentiable at a particular point by examining its partial derivatives 
(of any order) at that point. The test for differentiability given in most multivari-
able calculus books says that a function is differentiable at a point if the first 
partial derivatives are not only defined but also continuous at that point. In fact, 
examination of the proof shows that it suffices to assume that only one of the 
partial derivatives is continuous, but this example shows why one cannot drop the 
continuity requirement completely. 
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Figure 3. z = f ( x ,  y ) .  Figure 4. z = g(x ,  y 1. 

Here is another well-known theorem from multivariable calculus; see [5, p. 2121: 

Theorem 5. (Second Derivative Test for Local Extrema) Suppose that f(x, y) is 
differentiable in a neighborhood of (a ,  b), fx(a, b) = f,(a, b) = 0, and f ,  and f, are 
differentiable at (a ,  b). Let D = fxx(a, b)f,,.(a, b) - [fx,(a, b)I2. Then: 

1. If D > 0 and f,,(a, b) > 0 then f has a local minimum at (a, b). 
2. If D > 0 and fxx(a, b) < 0 then f has a local maximum at (a, b). 
3. If D < 0 then f does not have a local extremum at (a ,  b). 

Once again, the plus topology can be helpful in constructing and understanding 
examples that illustrate why the hypotheses are needed. It is easy to check that the 
Second Derivative Test correctly determines that the function g in (1) has a local 
minimum at (0,O). Since the partial derivatives of f and g in (1) agree at (0, O), the 
test gives the same answer for f ,  even though f does not have a local minimum at 
(0,O). Of course, f does not satisfy the first hypothesis of Theorem 5 ,  since it is not 
differentiable in a neighborhood of (0,O). But it is not hard to modify f to make it 
differentiable everywhere, and still have the Second Derivative Test fail. We 
simply need a surface that is the same as the graph of g on a plus-open 
neighborhood of (0, O), but is concave downward outside of that neighborhood. A 
natural choice would be a surface given in polar coordinates by an equation of the 
form z = c(0)r2, where c(0) is 1when 0 is close to an integer multiple of n-/2 
and c(0) changes smoothly to a negative value when 0 is an odd multiple of n-/4. 
For example, we might let c be a function that is periodic with period n-/2 and 
define c(0) for 0 between 0 and n-/2 as follows: 

I i f 0  5 0 5  n-/8 
1 

c ( 6 )  = I 1- exp 6 + - I if n-/8 < 0 < 3n-/8
0 - 3 ~ / 8  0 - n-/8 

The graph of c is shown in Figure 5 ,  and the surface z = c(0)r2 is shown in 
Figure 6. This surface is the graph of a function h(x, y) that is infinitely differen- 
tiable at all points other than the origin, since c(0) is infinitely differentiable, and 
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Figure 5. y = c( 8 ) .  Figure 6. z = c ( 8 ) r 2 .  

0 and r are infinitely differentiable functions of x and y in a neighborhood of any 
point except the origin. Furthermore, since c(0) is bounded, there are constants a 
and b such that a(x2 + y2)  I h(x, y) I b(x2 +y2), from which it follows that h is 
differentiable at (0,O). And finally, since h agrees with g on a plus-open neighbor- 
hood of (O,O), all partial derivatives of h are defined at (0,O) and are the same as 
the partial derivatives of g. Therefore the Second Derivative Test incorrectly 
indicates a local minimum for h at (0,O). The only hypothesis of Theorem 5 that 
we have not checked is the differentiability of the partial derivatives at (O,O), so 
this hypothesis must fail for h, and it cannot be dropped from the theorem. The 
reader might enjoy checking that h,(x, y) = 2xc(O) - ycr(0) and h,(x, y) = 

2yc(O) + xcr(0). Using the fact that c(0) and c '(0) are bounded but not constant, 
it can be shown that the first partial derivatives are continuous but not differen- 
tiable at (0,O). One can get an example where the Second Derivative Test 
incorrectly indicates that a function does not have a local extremum by adding 
z = (1 - c(0??r2 to an appropriately chosen surface with a saddle at (O,O?, such as 
z = x2 +y2  + (2 + ~ ) q ,for sufficiently small positive E. Similar examples can be 
found in [4]. 

All of our examples so far have been based on the plus-open set A,  but there 
are many more exotic plus-open sets. For example, let {B,, B,, B,, . . . }  be a 
countable basis for the standard topology on R2. Inductively choose, for each 
positive integer n, a point (x,,, y,,) E B,, such that for all m < n, x, # x, and 
y,, # y,. Let F = {(x,, yl>, (x,, y,), (x,, y,), . . .}. Since F contains a point from 
every basic open set, R2 \ F has empty interior in the standard topology. However, 
we claim that R2 \ F is plus-open. To see why, suppose (a, b) E R2\ F. Then 
since there is at most one point in F with y-coordinate b, it is easy to find an 
E, > 0 such that if Ix - a 1 < E, then (x, b) @ F. Similarly, we can find an F, > 0 
such that if ly - b < F, then (a, y) E F .  Thus +,(a, b) c R2\ F, where 
F = mid&, ,  8,). 

Unusual plus-open sets can lead to unusual examples in multivariable calculus. 
For example, define j: R2 + R as follows: 

October 19991 MULTIVARIABLE CALCULUS AND THE PLUS TOPOLOGY 



Then j agrees with the constant function c(x, y) = 0 on the plus-open set R2\ F, 
and therefore by Corollary 4 all partial derivatives of j are defined and equal to 0 
everywhere except for the countably many points in F. But since both F and 
R2\ F are dense in the plane in the standard topology, j is discontinuous 
everywhere. 

Can the countable set of exceptional points in this example be avoided? Can a 
function have partial derivatives defined everywhere but be discontinuous every-
where? The answer is no, but to see why we need a fact about closures in the plus 
topology. For a set X c R2, we write cl(X) for the closure of X in the standard 
topology, and c l+(X)  for the closure of X in the plus topology. Note that 
c l+(X)  c cl(X), since the plus topology is finer than the standard topology. For 
X c R we also write cl(X) for the closure of X in the standard topology on R. 

Our example R2\ F shows that a nonempty plus-open set can have empty 
interior in the standard topology. However, this cannot be true of the closure in 
the plus topology of a nonempty plus-open set. In fact, we have the following 
slightly stronger theorem, which implies that R2 with the plus topology is a Baire 
space: 

Theorem 6. Suppose U is a nonempty plus-open set, and U = U,, ,,-U,. Then for 
some n, cl+(U,) has nonempty interior in the standard topology. 

Proof: Let (a, b) E U ,  and choose E > 0 such that +,(a, b) c U. For each 
x E (a  - E, a + E)  and n E Z + ,  let Y,x = {yl(x, y) E Q,}, and let Y" = 

u,, ,+ Y," = {yl(x, Y)  E U}. Since (x, b) E +,(a, b) c U and U is plus-open, Y" 
must contain an interval. Thus, by the Baire Category Theorem, there is some 
positive integer n, such that cl(x-:) contains an interval. Choose rational numbers 
p, and q ,  such that p, < q, and (p,, q,) c cl(E;;Y). 

For each positive integer n and rational' interval ( p ,  q), let X,,,,,,, = 

{x E (a  -- E, a + ~ ) n ,= n,  p, =p, and q, = q}. Since there are only countably 
many possible values for n, p ,  and q, another application of the Baire Category 
Theorem shows that there must be some n, p, and q such that cl(X,,,,,,) contains 
an interval. Choose c < d such that (c, d )  c cl(X,,,,, ). For each x E XI,,,,,, 
( p ,  q )  c cl(y;'), and it is not hard to see that therefore X,,,,,, X ( p ,  q )  c cl+(U,,). 
Similarly, since (c, d )  c cl(X,,,,, ,), it follows that (c, d )  x ( p ,  q )  c cl+(Q,), as 
required. 

Using Theorem 6, we can prove the following theorem of Baire; see [I] and [6]: 

Theorem 7. (Baire) Suppose f :  R2 + R and suppose f, and f, are defined at all 
points in R2. Then there is a dense set of points at which f is differentiable. 

Proof: For h # 0 define functions m, and n,, as follows: 

Note that m, and n, are separately continuous, since f is. Of course 
lim,,, ,m,,(x, y) = f,(x, y) and lim,,, ,n,(x, y) = f&x ,y). 

We claim first that if V is any nonempty open set and E > 0 then there 
is a nonempty open set W such that cl(W) c V and for all (u, u), (x, y) E W, 
If,(u,u) - f,(x, y)l < E and lf,(u, u )  - f,(x, y)l < E. To prove the claim, first 
choose a nonempty open set X such that cl(X) c V. Now for each positive integer 
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n and rational numbers p and q, let 

U,,,,,,= { ( x , y )  E X I  for all h ,  if 0 < I h  < l / n  then 

Clearly U{U,, ,, ,In E Zf and p, q E Q} = X, so by Theorem 6 we can choose 
n E Z+ and p ,  q E Q such that cl+(U,,,, ,) has nonempty interior in the standard 
topology. Let W be the interior of cl+(U,,,,,,). Then cl(W) c cl(X) G V, and 
using the fact that m,, and n, are separately continuous, it is not hard to see that 

W c cl+(U,,,,,) c { ( x , y )  E R21for all h ,  if 0 < h < l /n  then 

It follows that for all (x, y) E W, lf,(x, y) -p I ~ / 3and If,(x, y) - 4 I &/3, 
and therefore for all (u, u), (x, y) E W ,  Ifr(u, u) - fx(x,Y )  1 2&/3 < E and 
I f,(u, u) - f,(x, y) l I 2 ~ / 3< E, as required. 

Now let V, be any nonempty bounded open set. To prove the theorem, we must 
find a point in Vo at which f is differentiable. By the claim, let Vl be a nonempty 
open set such that cl(Vl) cVo and for all (u, u), (x, y) E VI, Ifr(u, u) -fX(x, y)l < 1 
and If,(u, u) - fy(x,y )  < 1. Applying the claim again, let V2 be a nonempty open 
set such that cl(V2) c Vl and for all (u, u), (x, y) E V2, If,(u, u) - f r h ,  Y )  < 11'2 
and If,(u, u) - fy(x,y )  < 1/2. In general, given I/;, we choose a nonempty open 
set + such that cl(V,+,) G V, and for all (u ,  u), (x ,  y )  E I/;,+1, 
If,(u, u) - f,(x, y)l < l / (n  + 1) and If,(u, u) - fy(x,y)l < l / (n  + 1). 

Let (a,  b) E n,,,- V,. Then for every positive integer n, (a, b) E V,,  and for 
every (x, y) E 6 ,  f,(a, b) - f,(x, y) 1 < l / n  and If,( a, b) - f,(x, y )  < l /n .  It 
follows that f, and f, are continuous at (a ,  b), and therefore f is differentiable at 
(a ,  b), as required. 

Returning to our function j in (2), we can now see why the exceptional points 
cannot be avoided. If the partial derivatives of a function are defined everywhere 
then, by Theorem 7, it must be not only continuous but also differentiable at a 
dense set of points. Our function j shows that the hypotheses of Theorem 7 cannot 
be weakened to allow a countable set of exceptional points. 

We close by mentioning two unusual properties of the plus topology that 
distinguish it from the standard topology on R2. The first follows almost immedi-
ately from Theorem 6: 

Theorem 8. The plus topology is not regular. 

Proot We have already seen that R2\ F is plus-open, so F is plus-closed. Let 
(a ,  b) be any point not in F. We claim that (a ,  b) and F cannot be separated by 
plus-open sets. To see why, suppose that U and V are disjoint plus-open sets with 
(a, b) E U and F c V. Then cl+(U) has empty interior in the standard topology, 
contradicting Theorem 6. 

The second unusual property of the plus topology is that it is not second 
countable, or even first countable. In fact, it is surprisingly difficult to find a 
natural basis for the plus topology. Note that the sets +,(a, b) are not plus-open, 
and therefore cannot be used as basis sets. It turns out that for any point 
(a, b) E R2, any local basis at (a, b) for the plus topology must have 22K0elements. 
This follows from more general results in [2]. 
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