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The Forced Damped Pendulum: 

Chaos, Complication and Control 


John H. Hubbard 

We show that a "simple" differential equation modeling a garden-variety damped 
forced pendulum can exhibit extraordinarily complicated and unstable behavior. 
While instability and control might at first glance appear contradictory, we can use 
the pendulum's instability to control it. Such results are vital in robotics: the forced 
pendulum is a basic subsystem of any robot. 

Most of the mathematical methods used in this paper were initially developed in 
celestial mechanics, largely by PoincarC. The literature of the field tends to be 
quite advanced indeed (see [I] and [Ill); one object of this paper is to show that 
computer programs, properly used, can make these advanced topics transparent. 
All the computer-generated pictures in this paper were produced by the programs 
Planar Systems and Planar Iterations [6], both written by Ben Hinkle (now at 
Maple). 

1. SOME PARALLELS IN CELESTIAL MECHANICS. When I was a graduate 
student, I was amazed by the results of Alekseev concerning a system formed by 
three bodies obeying Newton's law of gravitation; see [I] and [I l l .  As shown in 
Figure 1, two massive bodies of equal mass move in a plane P on ellipses 

Ithe satellite (mass 0) 

Figure 1. Alekseev's three-body system. 

symmetric around a common focus F, and the third body, the satellite, of mass 
zero, moves on the line L perpendicular to P through F. Once this satellite is 
launched, its motions are determined uniquely by the gravitational pull of the two 
massive bodies. 

The system has a natural unit of time, the "yearn-the time it takes the massive 
bodies to complete a revolution. Choose a time zero, so that it makes sense to 
speak of the Oth, lst, . . . ,nth year. Also let x denote the position on the line L, 
with x = 0 corresponding to F.. 
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Alekseev proved that there then exists a number N, which depends on the 
eccentricity of the orbits of the large bodies, such that given any sequence 
n,,n,, . . . of integers at least N, there exists a set of initial conditions that results 
in the satellite returning to cross the plane P exactly in the nlth year, the 
(n, + n,)th year, etc. In other words, given a specified sequence of years with gaps 
at least N, it is possible to choose an instant , fo  and a speed u = xt(t0) so that if 
the satellite is kicked off at that moment with that speed, it crosses the plane 
during the desired years: first during the nlth year, then n, years later, and so on. 
You can set up the satellite to return in any sequence of years you like, so long as 
the returns are spaced at least N apart. 

In particular, there exist unbounded orbits in which the satellite travels arbitrar- 
ily far away but always returns, for example the orbit corresponding to the 
sequence of gaps between crossings N, N + 1,N + 2, N + 3, . . . ) as well as in- 
finitely many different periodic orbits (for instance N, N + 12, N + 17, N, 
N + 12, N + 17,. . . ). 

Actually, Alekseev claimed the result only when the eccentricity is "sufficiently 
small." He needed to know that his system satisfied some requirements (basically, 
that a "horseshoe" should be present), and he could verify this only by a 
perturbation calculation near an explicitly integrable system. Horseshoes are 
discussed in Section 8. 

The pendulum model we explore here exhibits a similar sort of behavior: we can 
make our pendulum go through any specified sequence of gyrations by correctly 
choosing the initial conditions. More precisely, by appropriately choosing the 
position and the velocity of the pendulum at time 0, we can specify whether during 
each time period (the time period of the forcing term, in our thecase, 2 ~ )  
pendulum goes through the bottom position once clockwise, once counterclock- 
wise, or not at all. For example, we could specify that in each of the first six 
periods it could go through the bottom position once clockwise, in each of the next 
three periods it could go through the bottom position once counterclockwise, and 
in the tenth period oscillate around an upright position.. . . All imaginable 
sequences are possible: once the correct set of initial conditions is chosen, the 
differential equation governing the system automatically enforces the desired 
behavior. 

2. DIFFERENTIAL EQUATIONS AND PENDULUMS. There is only one law in 
mechanics: F = ma (force equals mass times acceleration). Thus the motion of a 
pendulum of length I ,  with a bob of mass m in a constant gravitational field of 
force g, with friction proportional to the velocity, and forcing f( t )  (Figure 2) is 
modeled by the differential equation 

f ( t )  - yIx' - mg sin(x) = m Ix" . 
, ---/--'----- v 

< 

force mass X acceleration 

The friction term yh' is a fairly good approximation to reality when the friction is 
due to air, and the speed of the bob is much less than the speed of sound. The 
term mg sin(x) is the force exerted by gravity; the weight of the body is mg, but 
only the component in the direction of motion contributes to the equation. The 
forcing f(t)  can be created by a current proportional to f( t )  through the axis of 
the pendulum, if the bob is a bar magnet perpendicular to the axis. In realistic 
situations (e.g., robot arms), this is the way forcing is really produced. 
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Figure 2. A pendulum being driven by alternating current. 

We explore the behavior of a pendulum whose motions are described by the 
particular differential equation 

cos(t) - 0 . 1 ~ '- sin(x) = x", 

in which both mass m and length I equal 1. 
My starting point was the observation by Borelli and Coleman [3] that numerical 

solutions of this equation are very sensitive to the integration method, step-length, 
etc., near the initial condition (x(O), ~ ' ( 0 ) )  = (0,2). That is, we start with a 
pendulum hanging down, and hit it with a mallet to give it velocity near 2. This 
paper is my attempt to understand this instability. The behavior I describe holds 
not just for the parameters m, y ,  1, g, f( t )  given; they could be varied in a certain 
range, which I don't know in any dctail, but which is large enough so that it would 
not be difficult to build a real system that behaves like the one described here. 

3. A FIRST ATTEMPT TO UNDERSTAND THE MOTIONS OF THE PENDU- 
LUM. The most obvious thing to ask a computer is: what do the motions of the 
pendulum look like? The following picture shows the motion resulting from 15 
different sets of initial conditions. Each graph starts with the position x(0) = 0; the 
initial velocities are evenly spaced between 1.85 and 2.1.The graphs are plotted for 
- 1 < t < 200 and -25 < x < 25. A word of caution: the overall features of 
Figure 3 are correct, but the details-exactly which equilibrium each initial 
condition leads to-might well be wrong. The exponential growth of errors is 
discussed in Section 11. 

A careful look at the picture suggests that there exists a stable periodic motion 
S(t) of the pendulum, which you see in the picture many times; of course, 
S(t) + 2 k r  is another description of the same motion for any integer k; the letter 
S stands for "stable." You will see five different levels of this stable periodic 
motion: one on the horizontal axis, three above, and one below. The first stable 
motion above the horizontal axis represents motions that go "over the top" once 
counterclockwise before settling down, like a child's swing going over the bar. The 
next layer up represents motions that go over the top twice counterclockwise 
before settling down, while the layer below the horizontal axis represents motions 
that go over the top once clockwise before settling down. 
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Figure3. Fifteen solutions to the differential equation cos(t) - 0 . 1 ~ '- sin(x) = x" 

Some motions rapidly settle down to this oscillation, others go through a 
complicated path before doing so, and yet others do not approach the periodic 
motion in this amount of time. These appear to be rare, and one might guess that 
given more time, almost all solutions do settle down. (One that does not is shown 
in [13, p. 2281; the existence of uncountably many others is proved in Theorem 3.) 

An obvious question is: what stable oscillation-what attracting periodic solu- 
tion-can a motion approach? This seems impossible to understand without 
another program. 

4. THE SCANNING PICTURE. We now look at the whole family of initial 
conditions: position represented by the horizontal axis, velocity by the vertical axis. 
We ask the computer to color initial conditions according to the stable oscillation 
the corresponding solution approaches (if any). This set of initial conditions is 
called the basin of the corresponding sink; it is an open subset of R2. 

This is best done as follows. First, find the initial values So(0), Sb(0) for one of 
the attracting periodic solutions, say the one with -2rr < So(0) < 0. We call the 
motion immediately above it S,, and the one above that S,; we have S,(t) = 

S,(t) + 2krr. Next, find a number r > 0 such that if 

then the motion x(t) is definitely attracted to S,. That is, any set of initial values 
inside the circle of radius r and centered at (S,(O), Sh(O)), gets arbitrarily close to 
the solution So (in fact, does so exponentially fast). We rely on computer calcula- 
tions to determine this, but it would not be hard to provide a rigorous mathemati- 
cal justification. We are not particularly interested in the points inside that circle; 
we are just establishing how we know that a motion is attracted to a particular 
attracting solution: it is attracted to it if it ever enters the circle of radius r around 
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the solution. In our case. we have 

(S,(O), Sh(0)) = ( -2.0463, .3927) and we can take r = 0.1. 

Now we solve the differential equation starting at every point of some grid (in 
our case, a 600 x 400 grid-240,000 points!), and sample the solution at times 
2rr, 4n-, . . . : this is a substantial computationl' taking about two hours even on a 
fairly fast Macintosh (200 MHz). 

If for some such motion w(t) and some integer n > 0 we have 

we know that this motion is attracted to S,. Color the point (w(O), ~ ' ( 0 ) )  in the kth 
color and solve the differential equation for the next point. If after some number 
of samplings (in our case 30: we integrated solutions for time 60n- = 185) the 
solution never falls within r of an attracting solution, leave the initial point white. 
We obtain Figures 4 and 5.  

5. LAKES OF WADA. The colored sets B, (called, for obvious reasons, the basins 
of the corresponding attracting motions S, are immensely complicated. 

We show that they form infinitely many Lakes of Wada. Wada was a Japanese 
mathematician who at the beginning of the 20th century constructed an example of 
three disjoint, connected open subsets of the unit disc D c R2 such that every 
point in the boundary of one is in the boundary of the other two [151. This amazed 
the mathematical community at the time: if you try to draw three (connected, open) 
lakes in an island, you would probably soon convince yourself that all three can 
touch at only two points. Actually, it appears that Brouwer discovered this 
phenomenon earlier [4]. 

Figure 4. The different colors (hard to appreciate in black and white) represent different basins: which 
initial conditions are attracted to which sinks. Points colored white may be initial conditions that are 
never attracted to a sink. but more likely they are attracted to sinks that are off the picture. They could 
also be attracted to sinks in the picture. but not during the time allowed. 
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Figure 5. In black and white, the four basins of Figure 4 are hard to distinguish. This figure represents 
just one basin. 

Let me sketch the construction as outlined in [IS],illustrating the dangers of 
philanthropy; this is illustrated by Figure 6. 

Suppose D is an island cursed with three philanthropists, one of whom wants to 
bring water to every inhabitant, one tea, and one coffee. At the beginning each has 
a pond of his own beverage. 

Figure 6. Digging the lakes of Wada. 
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First, the purveyor of water digs a system of canals emanating from his pond, 
and bringing water within 100 meters of every inhabitant, never actually touching 
the surrounding sea or the other ponds, and forming no loops. 

Next, the purveyor of coffee builds a system of canals emanating from his pond, 
bringing coffee to within 10 meters of every inhabitant, again forming no loops. 
Since the water canals make no loops, they don't cut off any inhabitants from the 
coffee pond, so this is possible. 

Now the purveyor of tea builds his system of canals, bringing tea to within 1 
meter of every inhabitant. Next the water purveyor goes back to work, extending 
his canals (necessarily building narrower ones) to bring water within 10 cm of each 
inhabitant. And so forth. At the end of this process, the poor inhabitants no longer 
have any dry land to stand on, but they have water, tea, and coffee as close as they 
want. What remains of the dry land is in the boundary of all three basins. 

Real philanthropists don't seem to behave this way, fortunately. Highway 
designers, on the other hand. . . 

Theorem 1 shows that our pendulum is creating lakes of Wada. 

Theorem 1. The basins B, have the Wada property: evevy point in the boundary of one 
basin is also in the boundaty of all the others. 

This is not quite as strong as the preceding statement about philanthropists, 
where every bit of dry land was in the boundary of all the basins. For the 
pendulum, all we can prove is that if a point is in the boundary of one basin, it's in 
the boundary of the others. Presumably there is no other dry land, but we don't 
know how to prove it. True lakes of Wada have been proven to exist in another 
setting of dynamical systems [7]. 

The first step in understanding why Theorem 1 is true is to get a grasp on the 
boundaries of the basins. Most of the material in the next section was developed by 
Kennedy, Nusse and Yorke; see [9] and [12]. They saw that the basin of a sink 
often has saddle points on its boundary, and that the stable separatrices of these 
saddle points make up the accessible boundaty of the basin. We will first define 
these words. 

6. ITERATION, SINKS, SADDLES, SEPARATRICES. Rather than thinking of 
the differential equation in [W" I find it much easier to think of the period mapping 
(or Poincare' mapping) in the plane 

This enables me to ignore what motions do between the samples. 
There is no real loss if we are interested in long-term behavior: iterating m times 

the mapping P is equivalent to solving the differential equation for time 2mr ,  
sampling the solutions every 2 r .  But the dynamical objects are now subsets of the 
plane rather than of space: most people visualize objects in the plane much better 
than in space. In our case, the planar objects are quite complicated enough. 

Seen this way, each point s, = (S,(O), Sb(0)) is an attracting fixed point of P ,  
also called a sink: P(s,) = s, and if a point p is close to s, (within r of it, for 
instance), its orbit under P approaches s,. The basin B, is exactly the set of points 
p such that the sequence p, P(p) ,  p2 (p ) ,  . . . approaches s,. 
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Sinks can also be periodic of period m > 1. Such sinks are points p such that 
PV' (p)= p ,  and such that if a point p ,  is sufficiently close to p ,  the sequence, 
pl, Pin(p,) ,  P2m(pl ) ,  . . . tends to p.  That is, the solution of the differential 
equation with (x(O), ~ ' ( 0 ) )  = p is an attracting periodic solution of period 2mn. 
Our mapping P appears not to have any such points (for these values of the 
parameters), although proving that it has none.may well be an unsolvable problem. 
But there are infinitely many periodic saddles, as is proved by Theorem 3. And 
there are infinitely many more whose existence is not guaranteed by that theorem. 

Like a sink, a saddle point for P corresponds to a periodic solution of the 
original differential equation, but while sinks are associated with stable equilibria, 
saddles are associated with unstable equilibria. A periodic solution (x(t), x'(t)) of 
the differential equation gives a saddle (x(O), ~ ' ( 0 ) )  of the period mapping P if 
there is a surface made up of solutions of the differential equation that tend to the 
attracting periodic solution as time tends to +m, and another surface of solutions 
that tend to the attracting periodic solution as t -, -m,  i.e., as one travels 
backwards in time. 

An example of a saddle point is the upwards (unstable) equilibrium for an 
unforced damped pendulum. Almost all solutions are captured by a stable equilib- 
rium. But exceptional solutions exist that take an infinite amount of time to 
approach the vertical, and other solutions take an infinite amount to fall away 
from the vertical: these solutions make up two surfaces that intersect along the 
constant solution corresponding to the unstable equilibrium. The surface of 
solutions that tend to the vertical in forward time is the stable separat~ix, while the 
surface of solutions tending to the vertical in backwards time is the unstable 
sepamtrix. The intersection of these surfaces with a Poincark plane (i.e., the plane 
t = 0) forms two curves, also referred to as separatrices. Think of the separatrices 
as watersheds: for our unforced pendulum, they separate the initial conditions that 
go over the top one more time from those that don't make it. 

Mappings R2-+ R2  (which might be the period mapping of a time-periodic 
differential equation in R2, as in our case) usually also have sources: fixed or 
periodic points that repel all nearby orbits. The period mapping P for our 
pendulum has no sources because P contracts areas by e-2"/10 = 0.53, due to the 
damping [8, vol. 2, chap. 81. No mapping can simultaneously contract areas and 
map some region to a strictly larger region, as would have to happen near a source. 
Of course. P-' has sources wherever P has sinks. 

7. SADDLES IN THE BOUNDARY OF B,. The computer finds four saddles 

pk,  . . . ,pk,  in the boundary of each basin. These saddles form two cycles of 
period 2 (i.e., the solutions of the differential equation with initial values at these 
saddles have period 4n) .  The boundary of the basin appears to be made of their 
stable separatrices, as drawn in Figure 7. We will call these separatrices at(p,<, , ) :  
these are the watersheds that separate the solutions falling into the basin from 
those that don't. 

In fact, the preceding statement is not true: the boundaries of the basins are not 
just the separatrices; they are much more complicated than that. The complication 
stems from the fact that all points of the boundary are limits of sequences in the 
basin, but not all such points are limits of paths. Consider Wada's construction: 
some points of the boundary of the water are on the edge of some water stream, 
but most are not. For one thing, points on the edge of a coffee stream are not on 
the edge of a water stream, even though they are in the boundary of the water: 
there are water streams arbitrarily close, but tea streams even closer, etc. Such 
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Figure 7. The stable separatrices of the saddles of period 2 in the boundary of a basin provide an 
outline drawing of the basin. Thus this picture is more or less the same as Figure 5, but the stable 
manifolds would need to be continued for a very long time to get as much resolution as figure 5 
provides. 

points are inaccessible by water: you can reach out to them over other streams, 
with an arbitrarily small motion, but you cannot reach them in a boat. Most points 
of the common boundary (the separator) are not accessible from the water, coffee, 
or tea. 

Our basins are similar to those of the Wada example. Each includes a central 
"pond" with four canals leading off from it, which dwindle to become infinitely 
narrow streams, intermingled with streams belonging to other basins. 

In our case, the inward pointing unstable separatrix at each of the four saddles 
is attracted to the sink, as shown in Figure 8, and provides a path from the sink to 

Figure 8. A basin cell; the points P- ' ( c , )  illustrates the proof of Theorem 2 
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the stable separatrix of the saddle. Thus the stable separatrix is part of the 
accessible boundary. 

Theorem 2. The accessible boundary of B, is exactly the union of the stable separatri- 
ces c~+(p , , , )  i = 1, .  . . ,4 .  

The proof consists of looking at Figure 8. 
The colored neighborhood C, of the sink s, (called a basin cell in [12]) is 

bounded by arcs of four stable separatrices a+(p, , , )  and arcs of the four unstable 
separatrices a-(p,, ,) ,  which except for endpoints are contained in the interior of 
the basin. Thus any accessible boundary point q of B, not in U,  a+ (p , , , )  is 
necessarily outside C,, and a path 

: [O, &>Y ([O, I]) Bk 

joining q to s, intersects one of these four arcs, in points c,. Similarly, the path 
Pn '(y)  intersects one of these arcs in a point c,,,. The points z,,, = P-'"(c,,,) must 
be on y,  and must converge to q since for any E > 0, the set y([O, 1 - €1) is a 
compact subset of B,. Thus Ptn(y([O, 1 - €1)) is inside C, (or any neighborhood of 
s, for m sufficiently large). 

But the c, lie in four compact arcs of U,  uP(pk , , ) ,  hence P-"'(c,,,) is very close 
to one of the saddles for m large. So q is one of the saddles p,, ,, and hence is on 
its stable separatrix. 

This ends the proof of Theorem 2 (or at least a fairly convincing argument; 
it is not a rigorous proof, as we discuss in Sections 11 and 13); now to justify 
Theorem 1. 

First, it is enough to show that each accessible point of dB, (the boundary of 
B,) can be approached by every other basin. Indeed, every point of dB, can be 
approached by accessible points, so if we can show that each accessible point of 
dB, is in the boundary of every other basin, then every point of dB, is in the 
boundary of every other basin. 

Figure 9. All four of the unstable separatrices horn the points p,,, enter both B, and B - ,  
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Second, it is enough to know that the four outward pointing branches of the 
unstable separatrices for the four accessible saddles in dB, enter every basin. 
Indeed, if the four unstable separatrices a-(p,, ,) ,  for i = 1, 2, 3, 4, enter B,,, then 
the inverse images of B,, accumulate to p,, ,, hence to the entire stable separatrix 
a f ( p o ,,I. This shows a little more: if all four a-(p, ,  ,) enter B,,, then no curve can 
enter B, without crossing a stream of B,,, i.e,, entering B,,. 

Third, rather than show that the outward-pointing part of each a - (p ,  ,) enters 
all the basins B,, for n any integer, it is enough to show that it enters the two 
neighboring basins B, and B-,  . We can prove this by induction. Figure 9 shows 
that the four separatrices a-(p, ,  ,), i = 1,2,3,4 enter the basins B-, and B,. 

Now suppose they enter B, for some k > 1. But they cannot enter B, without 
entering B,,, , because the a[,, enter B,,, , so that their inverse images give 
streams of B,,,, which they must ford to enter B,. 

8. SOLUTIONS NOT ATTRACTED TO THE SINKS. In this section we use 
techniques mainly due to Smale [I41 to show that the differential equation for our 
pendulum has trajectories that carry out any specified sequence of gyrations. 
During one time interval I, = [ 2 k ~ , 2 ( k+ 1 ) ~ )a solution (x(t), xl(t)) may satisfy 
x(t) = 0 (mod 2 ~ )  exactly 

[ - 11 once with x' < 0, 

[0] never, 

[ I ]  once with x' > 0, 

[NA] none of the above. 

These events correspond to the pendulum crossing the downward position 
exactly once clockwise, not crossing it, crossing it once counterclockwise, or doing 
something else. In particular, the attracting solutions belong to the "none of the 
above" category, because they cross the downward position twice during each 
period. So, eventually, do all solutions that are attracted to them. Thus Theorem 3 
describes solutions entirely contained in the separator, which are never attracted 
to one of the sinks. 

Theorem 3. Given any bi-infinite sequence of events . . . E - ,  ,E,,, E l , .  . . with E, E 

{[ -11,[O], [I]} (but not [NA]), there exists a solution of our differential equation that 
during each time interval [2k77, 2(k + 1 ) ~ )will "do" E,. 

Thus given any sequence of gyrations one might choose, there is a solution that 
does exactly that. In particular, any sequence (El )  of period m and that sum 
to 0 over one such period corresponds to a periodic cycle of period m for P. 
Theorem 3 is very similar to Alekseev's theorem, and is proved the same way: by 
exhibiting a Smale horseshoe. In Alekseev's case this requires a delicate perturba- 
tion argument; we show how the computer can make such a result transparent. 

We have found a sequence of fixed sinks s, that correspond to the downward 
equilibrium of the unforced pendulum. There is also a sequence of fixed saddles 
corresponding to a periodic solution of the original differential equation of period 
277 near the unstable upward equilibrium. If you draw a sequence of quadrilaterals 
Q, roughly aligned with the stable and unstable separatrices of these fixed saddles, 
as in Figure 10, you expect the image of such a quadrilateral to be compressed 
in the stable direction and stretched in the unstable direction, becoming long 
and filiform. 
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Figure 10. The quadrilaterals Q - ,  , Q o ,  Q , ,  together with the forward and backwards images of Q,. 

We now describe the set of points 

QL(EO> El \ )  = {PIP"(P) Q,,+L,~+ + E , , - ,  for0  5 n 5 N}. 
Let A,, B,, C,, Do denote the corners of Q,, as shown in Figure 10. The set 

P(Q,) is the curvilinear quadrilateral Q;,, shaded in Figure 10, with vertices 
Ah, Bb, Cb, DL. The key property of the image is that it crosses the quadrilaterals 
Q,  and Q-,,  as well as itself, in each case going from top to bottom (or bottom to 
top), with the top A,,B,, and bottom CODo mapping outside these quadrilaterals. 

This implies that each of en ( [ -  I]), Q,([O]), Q,([l]) forms a full-width subrectan- 
gle of Q,. Figure 11 shows the forward and backwards images of Q,, Q-,  and Q,, 
and a blow-up of showing how these intersect Q,. Indeed the backwards images 
(light shading) form full-width subrectangles. Of course, Q,  and Q - ,  also contain 
such subrectangles Q,(E,), etc. The inverse image P-'(Q,$E,)) is then again a 
(thinner) full-width subrectangle Q,(E,, El) .  

Figure 11. The forward images of Q - , ,  Q,, Q , ,  and their intersections with Q,. At right a blow-up 

of Q,,. 
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Figure 12. How the quadrilaterals move during one period 

Continuing this way, we see that for any finite sequence (E,, E l , . . . ,EN), the 
corresponding set Q,(E,, E,,  . . ..E,,) is a full-width subrectangle of Q,. Finally, 
the assignment of an infinite forward trajectory restricts the initial position to an 
infinite intersection of nested full-width subrectangles of Q,; such an intersection 
is a connected subset of Q, connecting one side of Q, to the other. In fact, it is a 
smooth curve, but this requires writing some inequalities. 

A similar argument shows that any finite backwards trajectory restricts the final 
position to a full-height subrectangle of Q,, and an infinite backwards trajectory 
leads to a connected subset joining A, B, to C, D, (again in fact a smooth curve). 
If X, Y c Q, are connected subsets, with X joining D,A, to B,C, and Y joining 
A,B, to COD,, then X n Y + 0. Thus there is a point realizing any prescribed 
symbolic trajectory. 

Finally, I claim that the points of Q,([- I]), Q,([0]), Q,([l]) realize the events 
[ - 11, [O], and [I], respectively. Figure 12 shows the images of Q,( + 1) and Q,( - 1) 
at times 

The first set certainly seems to cut the line x = 25- exactly once with y > 0; the 
second set seems to cut the line x = 0 once with y < 0. 

9. CONTROLLING THE PENDULUM. Imagine that the pendulum is massive, 
and is being used as a flywheel to control some very delicate operation, like 
polishing the mirror of a telescope. An array of lasers is constantly monitoring the 
operation, deciding on the fly whether the pendulum should turn clockwise, 
counterclockwise, or wait until the mirror has been repositioned. 

The previous section showed that there are motions of the pendulum perform- 
ing any specified sequence of gyrations, in particular the one required a posteriori 
by the polisher. But on second thought this seems useless: these motions are 
extremely unstable, and the slightest error in the initial condition destroys them, as 
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well as any perturbation of the differential equation itself. But if the machine is to 
perform any work, this inevitably perturbs the differential equation, in a way that 
is essentially unpredictable (you cannot predict how much work one swipe of 
the polisher will accomplish), and in any case we don't know ahead of time 
the sequence of swipes and stops the task will require. 

On third thought, we see that the instability of the specified motions is exactly 
what should make them useful! Suppose that our array of sensors controls the 
current f ( t )  that is forcing the pendulum, changing it from cos(t) to something 
like 

( 1  + a(t))cos ( t )  (amplitude modulation) or 

cos ( ( 1  + a(  t )) t ) (frequency modulation), 

where a(t) represents the fine-tuning necessary to achieve the desired sequence of 
gyrations. The point is that we do not have to figure out what sequence we want 
ahead of time: the sensors can react to the polishing of the telescope on the fly, 
computing the adjustment a(t)  that is necessary. It is because of the instability that 
you can keep a(t) small and still realize any sequence of gyrations: you don't need 
to grind to a halt, compute, and start up again; the corrections can be done 
smoothly. A useful analogy is skiing: a beginning skier plants his skis well apart, 
seeking stability, which is fine until he tries to turn and discovers he can't. An 
expert skier, with skis parallel and touching, is highly unstable, and a slight wiggle 
of the hips allows him to negotiate a mogul. Of course he doesn't plot his entire 
path at the top of the mountain; he calculates the slight adjustments a(t)  as they 
are needed. 

Theorem 4. For any sequence of events E,, E l , .  . . and any sufficiently small distur- 
bance b(t) of the forcing term cos t, there exists a function a(t) of the same order of 
magnitude as b(t) and an initial condition x(O), xl(0) such that the solution of the 
differential equation 

xt' + O.lxt(t)  + sin(x) + b( t )  = ( 1  + a ( t ) )  cos 2 

with those initial conditions realizes the specified sequence of events. 

This result is fairly obvious: choose a(t) as the pendulum approaches the 
upwards position so as to speed it up or slow it down as required. The problem is 
how to compute the a(t), in terms of available data. Clearly a(t) should depend 
only on the values of b up to time t - it should not depend on the specified 2 ~ ;  
sequence of events very far ahead, as this is unknown. How small can a(t) be 
made? How far ahead in the required sequence of events does it need to look? 
How sensitive is it to small errors in the sensors?. . . 

10. CONTROL AND CELESTIAL, MECHANICS. To return to celestial mechan- 
ics for a moment, it is interesting to note that when sending a spaceship to visit the 
outer solar system, NASA uses the instabilities of the differential equations 
describing gravity in much the same way as we have used the instabilities of the 
pendulum. It is well beyond present-day engineering to send a spaceship out of the 
solar system by simply using its fuel to accelerate it. Instead, it is allowed to "fall" 
into the sun, with an orbit that passes close to Venus. It then loops around Venus; 
we can imagine that it is the "satellite" in the three-body system consisting of .
itself, Venus, and the sun. 
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This system is similar to Alekseev's (somewhat more complicated: a Poincark 
section would need to be 4-dimensional rather than 2), and one can prescribe an 
orbit so that the space ship steals a tiny amount of potential energy from Venus, 
speeding up enormously in the process, and ends up in a very unstable state where 
a small push by guidance rockets can put it on the path to Jupiter. 

This scenario is then repeated near Jupiter, Saturn, and Uranus, with the 
spaceship each time gaining momentum, and using small pushes to head itself in 
the direction of the next destination. Thus the chaos of the solar system is essential 
to its exploration. 

11. WHAT IS PROVED? To what extent does this paper prove anything? As 
written, no statement is proved anywhere: for the punchline we just looked at a 
computer picture. How do we know that these pictures are right? I do not address 
the possibility that the programs have essential bugs and are computing something 
other than what I think, or the esoteric possibility that the computer arithmetic is 
wrong. But even if the computer is computing exactly what I think, that is still only 
an approximation to solutions of the differential equations; we need to quantify 
the quality of the approximation. The contribution of round-off error also should 
be addressed. 

Actually, many of the results are not hard to prove rigorously, namely all those 
where we have to show that after time 2 n ,  solutions are within some fairly large E 

of the value suggested by the computer drawings. 
Good estimates of long-term errors of numerical approximations to solutions of 

differential equations are notoriously hard to come by, but that is not really a 
problem here. First, we do not need good estimates (solutions need only be 
accurate to about 0.1); second, the time considered is not long (2.s~); and most 
important, the differential equation has a small Lipschitz constant ( d m < 1.42). 
Errors in solutions to differential equations grow at most exponentially, at a rate 
ek', where t is time (in our case, 2 .s~)  and k is the Lipschitz constant; with 
k < 1.42, errors grow at a fairly small interest rate, and can be controlled for a 
short time. 

Using these numbers, a straightforward computation using the fundamental 
inequality ([a, Chapters 4 and 61) shows that if the initial velocity satisfies Ix'(0) 1 < 3, 
then Euler's method with step-length h = 0.000002 gives results accurate to 0.1 
after time 2 n .  Moreover, the same inequality shows that round-off error con-
tributes a much smaller error yet. This is not a good way to do such numerics; 
better numerical methods give much better estimates [5]. For instance, formula 
(14) of [2] can be used to show that the fourth order Runge-Kutta method with 
step 0.005 has more than the needed precision. 

A word of caution, though. The elementary bound above says that errors of all 
types are multiplied by at most e2"'" 7500 over one time period. It is not too 
difficult to improve this to e2"" = 1000, and one could improve it further. But 
one could not improve it very much further. 

Consider for example the completely unavoidable error caused by the computer's 
inability to handle numbers with infinite precision. If it handles numbers to 16 
significant digits, you may think you are starting at a saddle point, but your initial 
error (the distance between the saddle point and where you really are) may be as 
great as The largest eigenvalue 1 0 ~ ' ~ .  A of the linearization of P at the fixed 
saddles in the Q, is about 321 (according to the computer). As long as you are in 
the region where P is approximately its linearization at this saddle, errors of all 
types are expanded by a factor of A over one time period, and hence A'" over m 
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time periods. So after m iterations the error will have mushroomed to 1016(321"'): 
for m = 7 the initial minute error will have grown to 35. But already for an error 
of 1, you will have been booted out of the region where the linearization is a 
reasonable approximation to reality. 

Thus no numerical method can guarantee even one digit of accuracy after six 
time periods, if we are computing with 16 significant digits. In fact, the reality is 
much worse than that, and I wouldn't trust anything after four time periods 
without some good reason. 

12. A POSTERIORI BOUNDS. Good reasons to trust solutions are available: I 
advocate extrapolation, as described in [8, Chapter 31. At the moment, this works 
only for fixed step-length, but for a PoincarC mapping of a differential equation, 
fixed step-length is probably best anyway. For other possible methods, consult [lo]. 

Denote by u,(t) the numerical approximation to the solution of some differ- 
ential equation given by the standard fourth order Runge-Kutta method, with 
u,(O) = a.  Then the theory asserts that for each fixed t the approximation u,( t )  
converges to the value of the solution u(t), and that we have an asymptotic 
development 

The exponent 4 is a feature of this approximation procedure; other procedures 
have different exponents. 

If for some h we know uh(t), uh,,(t), and u,,,,(t), and we assume that we have 
an asymptotic development of the form u,( t )  = u(t) + Chk + o(hk)  for some k, 
we can extrapolate the values of k and of C from the values of the approximate 
solutions: 

1 - ~ h / 2 ( ~ )  2k u / l ( t )  - u/i/2(t)
k = -log and C = -


log2 uh,2(t) - '/1,4(~) 2k - 1 hk 


Now suppose we calculate ~ , , , ~ , , , ( t )  m,  focusing on the for a range of values of 
expression for k above. The theory says that as m increases, the value of k should 
approach 4, but that doesn't take round-off error into account; typically the value 
of k approaches 4 as m increases, then veers away from 4 as round-off error takes 
over. If there is a range of values of m where k is close to 4, the approximation is 
happening the way the theory predicts, and we can probably trust the correspond- 
ing estimate of the error. The following data illustrates this for our differential 
equation, solved for 0 5 t 5 1 6 ~ ,i.e., for 8 periods. We start with the two initial 
positions (7.15859,0.14097) and (7.16859,0.14097). The extrapolations we find are 

first solution second solution 
steps order error order error 

6 
12 
24 
48 
96 

192 
384 
768 

1536 
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Thus, the first approximation never becomes reliable; the order is never close 
to 4. In particular, there is no reason to think that the quantity in the "error" 
column is actually an estimate of the error. But the second appears to be 
converging nicely, with the order approaching 4, and probably the error estimate of 
0.003 is reliable. Thus although any estimate we make a priori for a bound for the 
error is bound to be wildly pessimistic, after the computation we can make a good 
guess as to how reliable it is. 

13. 	QUESTIONS AND OBSERVATIONS. 

(1) Are there any periodic sinks other than the attracting fixed points 	we 
found? I have no idea how to attack this problem. For one thing, I don't 
trust computer drawings on this point: in many instances I eventually 
found sinks whose basins were too small to be visible on computer 
drawings unless you knew where to look. For another, the answer might 
depend in the most delicate way on the parameters: there definitely are 
other attracting fixed points when the forcing term is 1.22 cos t instead of 
cos t ;  for example, there is a sink of period 3, where solutions go from the 
point with coordinates x = - 1.29785, y = 1.0025 to the point x = 

- 1.3349, y = -0.21286, to the point x = -3.004469, y = 0.17586, and 
then back to the first point . .  . . In fact, with those parameters there are 
at least two more sinks of period 3, in addition to all the translates of the 
three sinks by 2 ~ .  

This problem may be unsolvable. John Milnor's candidate for the 
simplest unsolvable problem of mathematics is the question: "Does the 
polynomial x2  - 1.5 have an attracting cycle?" Of course, if it does, one 
can find it with a finite amount of work. But if it doesn't, there may be no 
proof of this fact. 

(2) Is the complement of all the basins 	B, of measure O? This would mean 
that with probability 1every initial point is attracted to a sink. I think this 
is the case, but have no solid grounds for this belief. Even the computer 
isn't very definite, and besides, this is one point where numerical error 
might really be important: the perturbations of the period mapping due to 
errors of integration and round-off might affect the probability of being 
attracted to a sink. 
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