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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

The Hyperbolic Pythagorean Theorem 

in the Poincar6 Disc Model 


of Hyperbolic Geometry 


Abraham A. Ungar 

Sometime in the sixth century B.C. Pythagoras of Samos discovered the theorem 
that now bears his name in Euclidean geometry. The extension of the Euclidean 
Pythagorean theorem to hyperbolic geometry, which is commonly known as the 
hyperbolic Pythagorean theorem (see [3,5,6,9-1111, does not have a form analo- 
gous to the Euclidean Pythagorean theorem, so some authors have concluded that 
a truly hyperbolic Pythagorean theorem does not exist. For example, Wallace and 
West assert "the Pythagorean theorem is strictly Euclidean" since "in the hyper- 
bolic [PoincarC disc] model the Pythagorean theorem is not valid!" [15]. We show 
that a natural formulation of the hyperbolic Pythagorean theorem does exist: it 
expresses the square of the hyperbolic length of the hypotenuse of a hyperbolic 
right angled triangle as a natural "sum" of the squares of the hyperbolic lengths of 
the other two sides. 

The most general Mobius transformation of the complex unit disc D = 

{z : lzl < 1) in the complex z-plane [2,4,8], 

defines the Mobius addition CE in the disc, which allows the Mobius transforma- 
tion of the disc to be viewed as a Mobius left translation 

followed by a rotation. Here 6 E R is a real number, z ,  E D ,  and Z, is the 
complex conjugate of z,. A left Mobius translation is also called a left gyrotransla-
tion [13]. Left gyrotranslations occur frequently in hyperbolic geometry [7, p. 551. 
and are sometimes called hyperbolic pure translations [9, p. 2241. 

The prefix gyro that we use to emphasize analogies stems from the Thomas 
gyration, which results, in turn, from the abstraction of the relativistic effect known 
as the Thomas precession [13,14]. The relevance of the Thomas precession to 
hyperbolic geometry is not unexpected [9, p. 2511 since this geometry underlies 
relativistic velocities. The sensitivity of Thomas precession to the non-Euclidean 
nature of the geometry of spacetime has attracted NASA's interest in measuring 
the Thomas precession of gyroscopes of unprecedented accuracy in Earth orbit; 
see http://einstein.stanford:edu. 
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The Poincark hyperbolic distance function in D is [2] 

1 a - b  
d ( a ,  b )  = -- z b = 1 a e b 1 7  

where we use the obvious notation a e b = a @ ( - b )  for a, b E D. It satisfies the 
Mobius triangle inequality 

d ( a ,  c )  5 d ( a ,  b )  @ d ( b ,  c ) ,  ( 3 )  
which involves the Mobius addition @ of two real numbers in the complex unit 
disc D. We prove (3)after the proof of our main theorem and a discussion of some 
relevant group theoretic properties of Mobius addition. The right hand side of (3)  
can be written as 

tanh(tanh-' d ( a ,  b )  + tanh-' d ( b ,  c ) )  (4)  

so that the Mobius triangle inequality can be written as an inequality 

that involves the ordinary, rather than the Mobius, addition of real numbers. The 
hyperbolic distance function in D is commonly defined in the literature by 
[7, p. 531 

rather than by d(a,  b )  in which case we have in the triangle inequality 

h ( a ,  c )  I h ( a ,  b )  + h ( b ,  c )  ( 7 )  
for all a, b,  c E D. The complex unit disc with its PoincarC distance function, 
called the Poincare' disc, gives the PoincarC disc model of hyperbolic geometry, in 
which geodesic lines are circular arcs that intersect the boundary of the disc 
orthogonally [3]. 

Theorem. (The Hyperbolic Pythagorean Theorem) Let Aabc be a hyperbolic 
triangle in the Poincare' disc, whose vertices are the points a, b and c of the disc and 
whose sides (directed counterclockwise) are A = -b @ c,  B = -c @ a, and C = 

-a @ b. If the two sides A and B are orthogonal, then IA 1 @ I B 1 = I C 1 '. 
Proof Let Aabc be any hyperbolic triangle whose vertices are the points a, b,  and 
c of the disc, and whose sides, A ,  B, and C, are geodesic segments that join the 
vertices, as shown in Figure 1. The measure of the hyperbolic angle between two 
sides of a hyperbolic triangle is given by the Euclidean measure of the angle 
formed by Euclidean tangent rays [3]. A hyperbolic right triangle is a hyperbolic 
triangle one of whose angles is ~ / 2 .Furthermore, let Aabc be a hyperbolic right 
triangle whose sides A and B are orthogonal. Its right angle can be moved to the 
center of D by an appropriate Mobius transformation (1)  such that its two 
orthogonal sides lie on the real and on the imaginary axes of D, as shown in 
Figure 1. Mobius transformations of the disc preserve both the hyperbolic length 
of geodesic segments and the measure of hyperbolic angles. Hence, the resulting 
triangle A a'b'c', obtained by moving A abc as shown in Figure 1, is congruent to 
Aabc in the sense that the two triangles Aa'b'c' and Aabc possess equal hyper- 
bolic lengths for corresponding sides and equal measures for corresponding angles. 
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Figure I. The Hyperbolic Pythagorean Theorem in the con~plexunit drsc. The square of the hyperbolic 
length of the hypotenuse of a hyperbolic right triangle equals the Mobius sum of the squares of the 
hyperbolic lengths of the other two sides. Furthermore, sin oi = y ( A ( / ( y c( C ( )  and sin P = 

y ~ l B l / ( y ~ I C l ) .  

The vertices of the relocated hyperbolic right triangle aa'b'c' are a' = x, 
b' = iy, and c' = 0, for some x, y E ( - 1 , l ) .  The hyperbolic length of the geodesic 
segment joining two points a and b of the disc is d(a ,  b) = Ib 8 a . Accordingly, 
the hyperbolic lengths of the sides A,  B ,  C of the triangle A a'b'c' are IA I ,  1 BI, 
and 1 CI given by 

l~ l "1a '  8 c'12 = x 2 ,  and (8) 

Hence 

1 
which verifies the hyperbolic Pythagorean theorem for hyperbolic right triangles in 
the PoincarC disc. 

The Hyperbolic Pythagorean Theorem is not an isolated analogy with Euclidean 
geometry; analogies between the PoincarC disc model of hyperbolic geometry and 
Euclidean plane geometry abound in gyrogroup theory (121. It is shown there that 
the Mobius addition, @ ,  is analogous to the common vector addition, +, in 
Euclidean plane geometry. If we define 
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then gyr[a; b] has modulus 1 and for all a, b, c E D the following group-like 
properties of €3 can be verified by straightforward algebra: 

a €3 b = gyr[a; b](b €3 a)  Gyrocommutative Law 

a €3 (b €3 c) = (a  €3 b) €3 gyr[a; blc Left gyroassociative Law 

(a €3 b) @ c = a @ (b @ gyr[b; ale) Right gyroassociative Law 

gyr [a; b] = gyr [a  @ b; b] Left Loop Property 

gyr [a;  bl = gyr [a;  b €3 a ]  Right Loop Property 

A resulting geometrically important identity, also verifiable by straightforward 
algebra, is [12] 

( x  €3 a )  9 ( x  €3 b) = gyr [ x ,  a ] ( a  9b) (I1) 
for all a ,  b, x E D. Taking the modulus of each side of (11) gives 

d ( x  a?a ,  x @ b) = d ( a ,  b ) ,  ( I21 
which shows that the PoincarC distance function (2) is invariant under Mobius left 
gyrotranslations. 

To verify the Mobius triangle inequality (3), let y, = ( I  - a 2 ) - 1 / 2  for any 
a E D.  Then y, = y l ,  is a monotonically increasing function of a 1 that satisfies 
the useful identity 

for all a ,  b E D [I,  p. 21, as one can verify by squaring both sides. 
It follows from (13) that 

Since 1 la 1 €3 1 b 1 I = a 1 @ 1 b 1, and since y = y is a monotonically increasing 
function of lzl, the inequality in (14) implies the inequality 

for all a ,  b E D. 
Replacing x by -x in (II), and noting that -(-x @ b) = x 9b, we have 

( -x  €3 a )  €3 ( x  8b) = gyr [-x, a ] ( a  e b) ( I61 
for all x, a, b E D. Finally, (16) and (15) imply 

for all a, b, x E D, which proves the Mobius triangle inequality (3). 
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Is the Composite Function Integrable? 

Jitan Lu 

It is well known that the composition of two continuous functions is continuous 
and hence Riemann integrable. However, the composition of two Riemann inte- 
grable functions may or may not be Riemann integrable. For example, let 

1 when y .?I 0, 
0 when y = 0, 

and 

0 when x is an irrational number, 
clwhen x = -, where p and q are two coprime integers. 
P 

Then 

0 when x is an irrational number, 
cl1 when x = -, where p and q are two coprime integers. 
P 

Both f and g are Riemann integrable on [O, 11, but the composition f o g is not. 
Therefore, it is natural to ask whether the composition of two functions is still 
Riemann integrable, when one is Riemann integrable and the other is continuous. 

In what follows, we let f be a function defined on the interval [a,  b], and let g 
be a function defined on the interval [c, d l  with its range contained in [a,  b]. 

Question 1. If f is continuous on [a ,  b] and g is Riemann integrable on [c, dl, is 
the composition f 0 g Riemann integrable on [c, dl? 

The answer is yes. 
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