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We now prove that f 0 g is not Riemann integrable on [0, 11. 
Let T be a division of [O, 11. Divide T into two parts. The first part T, 

contains all the intervals in which g(x) is non-zero and the second part T, 
contains the rest. The total length of all the intervals in T, is at most i;hence 
the total length of all the intervals in T2 is at least i.But in any interval I, of 
T2, we can always find two points ti and lisuch that g( t , )  = 0 and g( l ,)  # 0. 
Obviously, f 0 g( t i )  = 0 and f 0 g( l , )  = l . " ~ h u sthe oscillation Mi of f 0 g on I, 
is 1. 

Let M, be the oscillation of f 0 g on any interval I, of T, and Ax, be the 
length of the interval I,. Then 

Thus f 0 g is not Riemann integrable on [0, 11. 

The discussion can be continued by asking for conditions on g to ensure that 
f 0 g is Riemann integrable, provided that f is Riemann integrable. The following 
result provides one answer to this question. The proof is left to the reader. 

Proposition 2. Let f be a Riemann integrablefunction defined on [a, b] and let g be a 
differentiable function with continuous and non-zero derivative on [c, dl. If the range of 
g is contained in [a, b], then f 0 g is Riemann integrable on [c, dl. 
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On the Generalized "Lanczos' 

Generalized Derivative" 


Jianhong Shen 

This short note is an extrapolation of Groetsch's interesting article [I], and may 
lead to a clearer understanding of Lanczos' derivative. Only a minimal familiarity 
with random variables is required. 

Lanczos' generalized derivative is defined by 

where h is a parameter that can be assumed positive. It generalizes the ordinary 
derivative in the following two senses: 

(1) Suppose f(x) is locally C4 at x,. Then D, f(x,) = fl(x,) + O(h2). 
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(2) Suppose f(x)  has both the right and left derivatives fA(x) and ft(x) at x,. 
Then 

fA(x0) + ft(x0)
lim Dl, f (x , )  = 

h+O 2 

A few things puzzled me as I read [I]. First,,-what does the coefficient (3/2h3) in 
the definition really mean? Second, how can one see easily from its integral 
definition that D, is like a derivative? And finally, how exactly are the right and 
left derivatives involved in the limiting process of (I)? These questions gave rise to 
this note. 

Let X be a bounded symmetric continuous random variable (i.e., X and - X  
have the same distribution function) with variance 1. For example, X might be 
uniformly distributed on [ - 6,61(with mean 0 and variance 1). 

Recall that the ordinary finite difference operator dl, is defined by 

For any positive number a ,  define 

L , f (x)  = ~ { ~ ~ d , x f ( x ) } ,  

where E is the expectation operator. 
The motivation is simple. If a is very small, Y = a X  behaves like an 

atomic distribution at the origin. Therefore, one can pretend that X and Y are 
independent: 

L , f (x)  - E{X2)E{d , f (x ) j  = E{d,f(x) j .  

This is an averaged d,,! Hence, L, does resemble the ordinary derivative for 
small a .  

Moreover, L, generalizes Lanczos' derivative Dl,. To see this, take X to be any 
random variable that is uniformly distributed on [ - 6,6 1 .  Define h = 6 a . We 
show that L, = Dl,: 

We now understand that the mysterious coefficient 3/2h%as evolved from the 
simple parameter a after such a long journey! 

A rigorous error estimation for L, f (x)  follows. If f (x)  is C3  near x,, then 

The error term bound does not depend on the samples of X since we have 
assumed that X is bounded. Therefore, 
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Notice that E{X" = 0 since X is symmetric. This extends the first property of 
Lanczos' derivative. 

The second property of Lanczos' derivative generalizes to L,  in a similar 
fashion. Assume that both fA(x,) and ft(x,) exist. Then 

In the last step, we have applied the symmetry condition and E { x 2 )  = 1. The 
roles of f; and ft are seen clearly from these five lines. 

Finally, notice that: (1) If f (x)  is Lipschitz continuous at x, with L as its 
Lipschitz constant, then IL, f(xo)l 5 L; (2) The random variable involved can be 
replaced by any suitable distribution with a compact support, since we have not 
used the positivity condition. 
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A Stability Theorem 

Walter Rudin 

In 1968 I proved a theorem (stated below) about zeros of holomorphic functions in 
a polydisc [2, p. 871 which was later, in [I], referred to, much to my surprise, as a 
"cornerstone" of multivariable stability theory. The authors of [I] pointed out, 
quite correctly, that my proof used quite a bit of homotopy theory, and they 
proceeded to prove the theorem by a sequence of more elementary steps. The 
present note contains an even easier proof, which is also much shorter, and which 
relies only on very simple properties of the index (or winding number) of a plane 
curve around the origin. 

The following notation will be used. C is the complex plane, C* = C \ (0) is the 
set of all nonzero complex numbers, U and il are the open and closed unit discs in 
C, respectively, and T is the unit circle. For n 2 1, 

C1' = C x ... x C, U1' = U x ... x U, T I L  T x ... x T; 

each of these cartesian products has n factors. The torus T" is the so-called 
distinguished boundary of U"; it is a small (n-dimensional) part of the whole 
(2n - 1)-dimensional boundary of the polydisc Un.  

A(U1') is the class of all continuous f :  U"+ C that are holomorphic in Un.  
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