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A Modern Treatment of the 15 Puzzle 

Aaron F. Archer 

1. INTRODUCTION. In the 1870's the impish puzzlemaker Sam Loyd caused 
quite a stir i11 the United States, Britain, and Europe with his now-famous 
15-puzzle. In its original form, the puzzle consists of fifteen square blocks num- 
bered 1 through 15 but otherwise identical and a square tray large enough to 
accommodate 16 blocks. The 15 blocks are placed ~ I Ithe tray as shown in Figure 1, 
with the lower right corner left empty. A legal move consists of sliding a block 
adjacent to the empty space into the empty space. Thus, from the starting 
placement, block 12 or  15 may be slid into the empty space. The object of the 
puzzle is to use a sequence of legal moves to switch the positions of blocks 14 and 
15 while returning all other blocks to their original positions. 

Figure 1. The starting position for the 15-puzzle. The shaded square is left empty. 

Loyd writes of how he "drove the entire world crazy," and that "A prize of 
$1,000, offered for the first correct solution to the problem, has never been 
claimed, although there are thousands of persons who say they performed the 
required feat." H e  conti~lues, 

People became infatuated with the puzzle and ludicrous tales are told of 
shopkeepers who neglected to open their stores; of a disti~lguished clergyman 
who stood under a street lamp all through a wintry night trying to recall the 
way he had performed the f e a t . .  . . Pilots are said to have wrecked their 
ships, and engineers rush their trains past stations. A famous Baltimore 
editor tells how he  went for his noon lunch and was discovered by his frantic 
staff long past midnight pushing little pieces of pie around on a plate! [9] 

The reason for this hysteria, of course, is that Loyd's puzzle has 110solution. Each 
move causes a transposition of the 16 blocks (where the empty square is consid- 
ered to contain a blank block), and for the blank to end up in the lower right 
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corner requires an even number of moves, so the resulting permutation is even. 
But the desired end placement is an odd permutation of the original, and is hence 
unobtainable. One must assume Sam Loyd knew this, and from there one can 
only conjecture how much amusement he derived from driving the American 
public insane. 

The puzzle has inspired a sizable number of articles and references in the 
mathematical literature. The first of these is- a pair of articles published in the 
Alnericnrz . lo~~r~znl  of Mothe171citics in 1879 by W. W. Johnson [7] and W. E. Story 
[13]. Johnson's article is an explanation of why odd permutations of the puzzle are 
impossible to obtain, while Story's article proves that all even permutations are 
possible. The editors were apparently so apprehensive and defensive about pub- 
lishing articles on what some might charge to be a frivolous topic that they 
attached the following justification to the end of Story's article: 

The "15" puzzle for the last few weeks has been prominently before the 
American public, and may safely be said to have engaged the attention of 
nine out of ten persons of both sexes and of all ages and conditions of the 
community. But this would not have weighed with the editors to induce them 
to insert articles upon such a subject in the American Journal of Mathemat- 
ics, but for the fact that the principle of the game has its root in what all 
mathematicians of the present day are aware constitutes the most subtle and 
characteristic conception of modern algebra, viz: the law of dichotomy 
applicable to the separation of the terms of every conlplete system of 
permutations into two natural and indefeasible groups, a law of the inner 
world of thought, which may be said to prefigure the polar relation of left 
and right-handed screws, or  of objects in space and their reflexions ill a 
mirror. Accordingly the editors have thought that they would be doing no 
disservice to their science, but rather promoting its interests by exhibiting this 
A prioli polar law under a concrete form, through the rnedium of a game 
which has taken so strong a hold upon the thought of the country that it may 
almost be said to have risen to the importance of a national institution. 
Whoever has made himself master of it may fairly be said to have take11 his 
first lesson in the theory of determinants. [13, p. 4041 

The puzzle is a popular topic for books on recreational mathematics or  mathemati- 
cal potpourri, such as [I], [2], [4], [S], [9], and [12], most of which use it as an 
example to illustrate the consequences of even and odd permutations, as does [14]. 
Various sources have suggested variants of the 15-puzzle, including [31, [41, [6], [Sl, 
[lo], and [IS]. Today the puzzle appears on some computer screen savers, and a 
version is distributed with every Macintosh computer. 

Most references to the 15-puzzle explain the impossibility of obtaining odd 
permutations and many state Story's result that every even permutation is indeed 
possible, but this author found only three proofs. R. M. Wilson [I51 published a 
more general result in 1974, which we discuss at the end of this article. Ball and 
Coxeter's book [ I ]  refers to [ lo]  for a proof, but the article does not fulfill the 
promise. The arcane terminology of Story's article [I31 renders it difficult to wade 
through, and of course it does not take advantage of modern notation developed 
since then. Spitznagel [ I l l  published a proof in 1967, but later wrote that "Over 
the years there have been published a number of unnecessarily complicated 
explanations of the puzzle. I confess that I myself once published one of these 
overly complicated accounts" [12]. Indeed, Herstein and Kaplansky [S] write that 
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"No really easy proof seems to be known." This article intends to rectify 
that deficiency. 

2. SOLUTION. It should be noted that the proof provided here was developed 
independently of the previous proofs, but coi~lcide~ltally shares some ideas with 
Story's proof [13]. 

We call each of the 15 pieces blocks, and the 16 different squares on the board 
we call cells. For reasons that soon become apparent, we number the cells in the 
snakelike pattern shown in Figure 2. We can think of the empty cell as being 
occupied by a blcrnlz block. Each legal move then consists of "moving the blank," 
that is, excha~lgi~lg the blank block with one of its horizontal or  vertical neighbors. 
A pl(lcernerzt is a bijection from the set of blocks (including the blank) to the set of 
cells-in other words, a snapshot of the board between moves. Given an initial 
placement, we wish to determine what other placements are attai~lable through a 
sequence of legal moves. 

Figore 2. The dashed line and the numbers in the corner of each cell indicate a special ortlering of the 
cells that we use to define equivalence classes of placen~ents. 

Notice that by moving the blank block along the snaking path of Figure 2 we can 
move the blank to any cell without changing the order of the remaining blocks 
along this path. This leads us to define an equivalence relation on the set of 
placements, two placements being equivalent if we can obtain one from the other 
by moving the blank along the snaking path. Each equivalence class is called a 
corzfigur-ation, and contains 16 placements, one for each cell the blank can occupy. 
If block i occupies cell j and the blank occupies a higher numbered cell, then we 
say block i is in slot j; othenvise it is in slot ( j  - 1). Refer to Figure 3 for an 
example. All placements in a given configuration have the 15 blocks in the same 
slots, so we can denote a configuration by [ a , ,. . .,a , , ] ,  where a ,  is the slot that 
block i occupies in the configuration. 

Every move of the blank block effects a permutation on the slots occupied by 
the blocks. For example, moving the blank from cell 10 to cell 15 causes the 
permutation (10,11,12,  13,141 because the block originally in cell 15 (slot 14) is 
moved to cell 10 (which becomes slot 10) and the blocks in cells 11 through 14 are 
bumped up  one slot. A configuratio~l [ a , ,. . . , a , , ]  subjected to the permutation a 
is transformed into the configuration [ a , ,. . . ,a,,]cr = [ a , a , .. . , a , , a ] ;  since our 
permutations act on the right, we multiply them left to right. See Figure 3 for 
an example. 
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Figure 3. The placement shown here correspolids to the configuration C = [ l ,  2,3.  4, 8, 7. 6, 
5, 14.12.13. 10, 15, 11.91. Since the initial placement of Figure 1 corresponds to the configuration 
I = [ l ,  2 ,3 ,4 ,8 .7 ,6 ,5 ,9 .  10.11. 12. 15, 14. 131, subjecting the initial config~lration to the permutation 
cr = (9.14.11.13)(10, 12) yields C. This is an even permutation, so by Theorem 3, C is ohtainahle 
from I. 

Let cr,, , denote the permutation achieved by moving the blank from cell i to 
cell j. Then clearly cr,, ,+,  is the identity, and cr,, , = cr,;,l. This leaves 9 permuta-
tions for us to work out. These are tabulated in Table 1. The key point is that one  
can move the blank along the snaking path of Figure 2 to any cell without changing 
the configuration. Therefore, the first nine permutations listed in Table 1 and 
their inverses may be applied irz ally oldel., so the problem reduces to identifj- 
i11g the subgroup of S , ,  (the symmetric group on the 15 slots) generated by 
these permutations. We  prove that these permutations generate A, ,  (all even 
permutations). 

TARLE1. A sumliiilly of ill1 possible permutations of slots attained by moving the blank block 

M o ~ i n gthe blank from cell i to cell j effects the permutation tr,, ,. 


cr,,, =(1 .2 ,3 .4 .5 ,6 ,7)  
fJ27 = (2 ,3 ,3 ,5 ,6)  
cr3,, = ( 3 , 451  

u,,,? = (5,6,7,S,9,10,11) 
fT(,1 ,  = ((6, 7.8, 9, 10) 
r r ,  10 = (7 , s .  9) 
u,. I ,  = (9, 10, 11, 12, 13,14, 15) 

rrl0,l5  = (10. 11, 12. 13. 14) 
u l , , l J  = (11, 12, 13) 

cq = ; ~ i , ~ l1.2. . . . , 15= 

cr, , = cc,'for all re laan t  i > j 

Lemma 1. For rz 2 3 tlze 3-cycles gellelate A,,. 

Proofi By definition, all elements of A,, can be written as a product of an  
even number of transpositions. If a ,  6, c, and d are distinct, then (a ,  6)  (c, d )  = 

(a ,  b,  c)  (a, d ,  c), ( a ,  b ) (6,  c )  = ( a , c, 6), and (a , 6 )  (a ,  6)  = ld. • 

For 11 2 5. Lemma 1 also follows directly from the fact that A,, is simple. since 
the set of 3-cycles is closed under conjugation. Let us call a 3-cycle coizsec~~tiue if it 
is of the form (k ,  k + 1,k + 2). 
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Lemma 2. For rz 2 3, the conseciitzue 3-cjlcles ((1, 2, 3), (2, 3, 4), . . . , (11 - 2, 
12 - 1, n)} gener.ateA,,. 

Proof: Since the 3-cycles generate A,,,  it suffices to show that the consecutive 
3-cycles generate all 3-cycles. This is trivial for n = 3. For n 2 4 we see by 
induction that we can generate all 3-cycles not containing both 1 and 12. To 
generate (1, x,/I), let y E (1,.  . . ,11) \ (1, x, 11)': Then (1, x, n) = ( y ,  x. ~z)( l ,x, y ) .  
Of course, (1, n ,  x )  = (1, x. 11)'. 

Theorem 3. Tlze cj~cleslisted irz Table 1 genernte A, , .  

Proqfi Since all the cycles are odd, they are even permutations, so they generate a 
subgroup of A,,. Note that for any permutation cr we have u - ' ( u , ,  . . . ,a,, ) u  = 

( a , u ,  . . . , a L u ) .Thus, 

( 1 , 2 , . . . , 7 ) 1 1 ( 3 : 4 , 5 ) ( 1 : 2: . . . ,  7)" yields (1,2:3)  : . . .  , ( 5 , 6 , 7 ) ;  

( 5  6 . . . , 1 1 ) " ( 7 :  8 ,9) (5 ,6 ,  . . . , 11)" yields (5 ,6 ,7) ,  . . . , ( 9 , 1 0 , l l )  and 

(9,10, .  . . ,151-"(11: 12, 13)(9,10,.  . . , 15)" yields (9, 10, 11) , . . . , (13, 14,15) 

as rz  assumes the values -2, - 1,0, 1: and 2. This constitutes all consecutive 
3-cycles in S,,: so by Lemma 2 it generates A, , .  

Thus, given any two placements PI, and PI1 belonging to configurations Cf, 
and Cf2. respectively, PI? is obtainable from P1, if and only if Cfi is an even 
permutation of Cf,. Stated directly in terms of the placements, we see that if PI, 
and PI? have the blank in the same cell then PI? is obtainable from PI, if and only 
if P12 is an even permutation of the 15 numbered blocks in PI, .  Let n be the 
number of moves the blank cell in PI, is away from the blank cell in P12. Since 
each move of the blank block causes a transpositiorl of two blocks, then for n odd 
(respectively even) PI2 is obtainable from PI, if and only if PI2 is an odd 
(respectively even) permutation of the 16 blocks i11 PI,. 

3. GENERALIZATIONS. What follows is, in some sense. the broadest generaliza-
tion of the 15-puzzle. Given any connected graph on n vertices. we can label the 
vertices with 11 labels, one of which we call the blarzk label. Each move consists of 
interchanging the blank label with the label on an adjacent vertex. We then ask 
which of the rz! labelings may be obtained from a given initial labeling through a 
sequence of moves. More precisely, we ask what permutations of the (11 - 1) 
ordinary labels (a subgroup of S , , , ) can be obtained by a sequence of moves that 
returns the blank to its original vertex L' (since the subgroups obtained for 
different choices of u are ison~orphic).The 15-puzzle is a special instance of this. 
corresponding to the graph P, x P, (the cartesia~lproduct of the path on four 
vertices with itself) depicted in Figure 4. The vertices correspond to cells, the 
labels (not depicted) correspond to blocks, and the edges show which cells 
are adjacent. 

The crux of the method presented in Section 2 lies in inducing equivalence 
classes and defining slots by the position of the blank along a hamiltonian path 
(a path that visits every vertex of the graph exactly once). The method is applicable 
to any graph containing a hamiltonian path, using any such path. Thus, for the 
15-puzzle we could have used a spiral instead of the serpentine pattern of Figure 2. 
Another example is the Petersen graph. Numbering the vertices as in Figure 5. we 
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Figure 4. The gl'iph P4 X I',. 

Figure 5 .  For thc famous Pctersen graph. each labeling is obtainable from every other hy a sequence of 
legal movey. The vcrticcs arc numbrrcd to indicate a hamiltonian path. 

see that our desired group is generated by a,,,, a,,,,cr2,,:crj, cr,, S 7  and cr6, 
where a,,, = (i: i + 1, . . . :1 - 1) is the permutation of slots effected by moving the 
blank label from vertex i to vertex 1 .  Some calculation shows that the group 
generated is all of S,; [15] explains why this is no coincidence. 

We now discuss the general case, where the graph may or may not contain a 
hamiltonian path. If the graph contains a cut vertex r; then none of the labels other 
than the blank may be moved across u,so the problem decomposes into two parts. 
Thus, it suffices to consider graphs containing no cut vertices. 

In [IS], R. M. Wilson solves this case completely. Wilson's amazing result is that 
with the exception of cycles C,, and the graph 0, depicted in Figure 6, the group 
contains A,,_,. Clearly the group contains an odd permutation if and only if the 
graph contains an odd cycle, that is, the graph is not bipartite. So for bipartite 
graphs the group is exactly A,,-,, and otherwise it is all of Sf,-, . Thus, aside from 
the two exceptional cases, either exactly Iznlf' or 1111 of the I Z !  labelings are 
obtainable, depending on whether or not the graph is bipartite. For H, , ,  the desired 
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Figure 6. The graph H , ,  

group is PGL,(Z/SZ) acting on the projective line over Z/5Z (a group of order 
120 acting 3-tl'ansitively on a set of six elements), yielding six inequivalent label- 
ings. For C,,, the group is ((1,2, . . . , 1 1  - I)), yielding ( n  - 2)! inequivalent label- 
ings. The existence of such a simple complete characterization is surprising. 
However, Wilson's proof, while elegant, requires considerably more sophisticated 
mathematics than the simple and elementary proof provided here for the special 
case of the 15-puzzle. 
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