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Field Theory: From Equations 
to Axiomatization 

Part I1 

Israel Kleiner 

7. THE ABSTRACT DEFINITION OF A FIELD. The developments we have been 
describing thus far lasted close to a century. They gave rise to important "concrete" 
theories-Galois theory, algebraic number theory, algebraic geometry-in which 
the (at times implicit) field concept played a central role. At the end of the 19th 
century abstraction and axiomatics were "in the air." For example, Pasch (1882) 
gave axioms for projective geometry, stressing for the first time the importance of 
undefined notions, Cantor (1883) defined the real numbers essentially as equiva- 
lence classes of Cauchy sequences of rationals, and Peano (1889) gave his axioms 
for the natural numbers. In algebra, von Dyck (1882) gave an abstract definition of 
a group that encompassed both finite and infinite groups (about thirty years earlier 
Cayley had defined a finite group), and Peano (1888) gave a definition of a 
finite-dimensional vector space, though this was largely ignored by his contempo- 
raries. The time was propitious for the abstract field concept to emerge. Emerge it 
did in 1893 in the hands of Weber (of Dedekind-Weber fame). 

Weber's definition of a field appeared in his 1893 paper "Die allgemeinen 
Grundlagen der Galois'schen Gleichungstheorie" [15], in which he aimed to give 
an abstract formulation of Galois theory [8, p. 1361: 

In the following an attempt is made to present the Galois theory of algebraic 
equations in a way which will include equally well all cases in which this 
theory might be used. Thus we present it here as a direct consequence of the 
group concept illuminated by the field concept, as a formal structure com- 
pletely without reference to any numerical interpretation of the elements 
used. 

Weber's presentation of Galois theory is indeed very close to the way the subject is 
taught today. His definition of a field, preceded by that of a group, is as follows 
[15, pp. 526-5271: 

A group becomes a field if two types of composition are possible in it, the 
first of which may be called addition, the second multiplication. The general 
determination must be somewhat restricted, however. 
1. We assume that both types of composition are commutative. 
2. Addition shall generally satisfy the conditions which define a group. 
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3. Multiplication is such that 

a(-b) = -(ab) 

a(b + c) = ab + ac 

ab = ac implies b = c, unless a = 0 

Given b and c, ab = c determines a ,  unless b = 0. 

Although the associative law under multiplication is missing, and the axioms are 
not independent, they are of course very much in the modern spirit. As examples 
of his newly defined concept Weber included the number fields and function fields 
of algebraic number theory and algebraic geometry, respectively, but also Galois's 
finite fields and Kronecker's "congruence fields" K[x]/(p(x)), K a field, p(x)  
irreducible over K. 

Weber proved (often reproved, after Dedekind) various theorems about fields, 
which later became useful in Artin's formulation of Galois theory, and which are 
today recognized as basic results of the theory. Among them are [8], [lo]: 

(i) Every finite algebraic extension of a field is simple (that is, it is generated 
by a single element). 

(ii) Every polynomial over a field has a splitting field. 
(iii) If 	 F cF(a)  c F(b), then (F (a ) :  F )  divides (F(b) :  F) ,  where for fields K 

and E with E cK, ( K  :E )  denotes the dimension of K as a vector space 
over E. 

It should be emphasized that it was not Weber's aim to study fields as such, but 
rather to develop enough of field theory to give an abstract formulation of Galois 
theory [Ill .  In this he succeeded admirably. His paper, and somewhat later his 
two-volume Lehrbuch der Algebm, exerted considerable influence on the develop- 
ment of abstract algebra [3]. 

8. HENSEL'S P-ADIC NUMBERS. In an 1899 article entitled "New foundations 
of the theory of algebraic numbers," Hensel began a life-long study of p-adic 
numbers. Inspired by the work of Dedekind-Weber, Hensel took as his point of 
departure the analogy between function fields and number fields. Just as power 
series are useful for a study of the former, Hensel introduced p-adic numbers to 
aid in the study of the latter [lo, 11, p. 191: 

The analogy between the results of the theory of algebraic functions of one 
variable and those of the theory of algebraic numbers suggested to me many 
years ago the idea of replacing the decomposition of algebraic numbers, with 
the help of ideal prime factors, by a more convenient procedure that fully 
corresponds to the expansion of an algebraic function in power series in the 
neighborhood of an arbitrary point. 

Indeed, in the neighborhood of a given point a every algebraic function of a 
complex variable can be represented as an infinite series of integral and rational 
powers of z - a ,  as Weierstrass had shown. The elements of Hensel's field of 
p-adic numbers are formal power series C:akpk, where a, E 2, and n E 2.And 
just as every element of an algebraic function field can be identified with the set of 
its expansions at all points of the Riemann surface on which it is defined, so every 
element of an algebraic number field is identified with the set of its representa- 
tions in the field of p-adic numbers C;akpk for every prime p [2, p. 1111. 
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In a 1907 book, Hensel introduced topological notions in his p-adic fields and 
applied the resulting p-adic analysis in algebraic number theory. The p-adic 
numbers proved extremely useful not only there but also in algebraic geometry 
[4], [7]. They were also influential in motivating the abstract study of rings and 
fields [3]. 

9. STEINITZ. The last major event in the evolution of field theory that we 
describe is Steinitz's great work of 1910 [13]. But first some background. 

Algebra in the 19th century was by our standards concrete. It was connected in 
one way or another with the real or complex numbers. For example, some of the 
great contributors to 19th-century algebra, mathematicians whose ideas shaped the 
algebra of the 20th century, were Gauss, Galois, Jordan, Kronecker, Dedekind, 
and Hilbert, and their algebraic work dealt with quadratic forms, cyclotomy, 
permutation groups, ideals in rings of algebraic number fields and algebraic 
function fields, and invariant theory. All of these subjects were related in one way 
or another to the real or complex numbers. 

At the turn of the 20th century the axiomatic method began to take hold as an 
important mathematical tool. Hilbert's Fozlndations of Geometry of 1899 was very 
influential in this respect (see also our Section 7). Noteworthy also is the American 
school of axiomatic analysis, as exemplified in the works of Dickson, Huntington, 
E. H. Moore, and Veblen. In the first decade of the 20th century these mathemati- 
cians began to examine various axiom systems for groups, fields, associative 
algebras, projective geometry, and the algebra of logic. Their principal aim was to 
study the independence, consistency, and completeness of the axioms defining any 
one of these systems. Also relevant were Hilbert's axiomatic characterization in 
1900 of the field of real numbers and Huntington's like characterization in 1905 of 
the field of complex numbers [I], [3]. 

Steinitz's groundbreaking 150-page paper "Algebraische Theorie der Korper" of 
1910 initiated the abstract study of fields as an independent subject [13]. While 
Weber defined fields abstractly, Steinitz studied them abstractly. 

Steinitz's immediate source of inspiration was Hensel's p-adic numbers [3, 
p. 1941: 

I was led into this general research especially by Hensel's Theory ofAlgebraic 
Numbers, whose starting point is the field of p-adic numbers, a field which 
counts neither as a field of functions nor as a field of numbers in the usual 
sense of the word. 

More generally, Steinitz's work arose out of a desire to delineate the abstract 
notions common to the various contemporary theories of fields: fields in algebraic 
number theory, in algebraic geometry, and in Galois theory, p-adic fields, and 
finite fields. His goal was a comprehensive study of all fields, starting from the 
field axioms [3, p. 1951: 

The aim of the present work is to advance an overview of all the possible 
types of fields and to establish the basic elements of their interrelations. 

Quite a task! Steinitz's plan was to start from the simplest fields and to build up all 
fields from these. The basic concept that he identified to study the former is the 
characteristic of the field. He.re are several of his fundamental results, nowadays 
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staples of field theory [lo], [13]: 

(i) Classification of 	 fields into those of characteristic zero and those of 
characteristic p .  The prime fields-the "simplest" fields-are Q and 2,; 
one or the other is a subfield of every field. 

(ii) Development of a theory of transcendental extensions, which became indis- 
pensable in algebraic geometry. 

(iii) Recognition that it is precisely the fnite, 	 normal, separable extensions to 
which Galois theory applies. 

(iv) Proof of the existence and uniqueness (up to isomorphism) of the algebraic 
closure of any field. 


A description of all fields followed [ l l ,  p. 7541: 


Starting with an arbitrary prime field, by taking an arbitrary, purely transcen- 
dental extension followed by an arbitrary algebraic extension, we have a 
method of arriving at any field. 

The notions of transcendency base and degree of transcendence of an extension field, 
both of which Steinitz introduced, played a crucial role here. Also important was 
the well-ordering principle (or, equivalently, the axiom of choice), whose use he 
acknowledged [lo, 11, p. 201: 

Many mathematicians continue to reject the axiom of choice. The growing 
realization that there are questions in mathematics that cannot be decided 
without this principle is likely to result in the gradual disappearance of the 
resistance to it. 

Steinitz's work was very influential in the development of abstract algebra in the 
1920s and 1930s, as the following testimonials prove: 

Steinitz's paper was the basis for all [algebraic] investigations in the school of 
Emmy Noether (van der Waerden, [14, p. 1621). 

[Steinitz's work]. . . is not only a landmark in the development of algebra, but 
also. . .an excellent, in fact indispensable, introduction to a serious study of 
the new [modern] algebra (Baer and Hasse, [13, Preface]). 

Steinitz's work marks a methodological turning-point in algebra leading to 
. . . 'modern' or abstract algebra (Purkert and Wussing, [ l l ,  p. 7541). 

[Steinitz's work] can be considered as having given birth to the actual concept 
of Algebra (Bourbaki, [2, p. 831). 

10. A GLANCE AHEAD. We now list several major developments in field theory 
and related areas in the decades following Steinitz's fundamental work. 

(a) Valuation theory. In 1913 Kiirschak abstracted Hensel's ideas on p-adic fields 
by introducing the notion of a valuation field. He  proved the existence of the 
completion of a field with respect to a valuation. In 1918 Ostrowski determined all 
valuations of the field Q of rational numbers. Valuation theory, which "forms a 
solid link between number theory, algebra, and analysis" [7, vol. 11, p. 5371, played 
fundamental roles in both algebraic number theory and algebraic geometry; see [21, 
141, 171, 1141. 

(b) Formally real fields. In 1927 Artin and Schreier defined the notion of a 
formally real field, namely a field in which -1 is not a sum of squares. "One of 
[the] remarkable results [of the Artin-Schreier theory] is no doubt the discovery 
that the existence of an order relation on a field is linked to purely algebraic 
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properties of the field" [2, p. 921: A field can be ordered if and only if it is formally 
real. The theory of formally real fields enabled Artin in the same year to solve 
Hilbert's 17th Problem on the resolution of positive definite rational functions into 
sums of squares [7, vol. 11, p. 6401. 

(c) Classfield theoy. This is the study of finite extensions of an algebraic number 
field having an abelian Galois group. It is a beautiful synthesis of algebraic, 
number-theoretic, and analytic ideas, in which Artin's Reciprocity Law has a central 
place. Major strides were already made by Hilbert in his "Zahlbericht" (Report on 
Number Theory) of 1897. More modern aspects of the theory were developed by 
Artin, Chevalley, Hasse, Tagaki, and others; see [S]. 

(d) Galois theory. Artin set out his now-famous abstract formulation of Galois 
theory in lectures given in 1926 (but published only in 1938). In a 1950 talk he said 
[S, p. 1441: 

Since my mathematical youth I have been under the spell of the classical 
theory of Galois. This charm has forced me to return to it again and again, 
and try to find new ways to prove its fundamental theorems. 

Extensions of the classical theory were given in various directions. For example, in 
1927 Krull developed a Galois theory of infinite field extensions, establishing a 
one-one correspondence between subfields and "closed" subgroups, and thereby 
introducing topological notions into the theory. There is also a Galois theory for 
inseparable ,field extensions, in which the notion of derivation of a field plays a 
central role, and a Galois theory for division rings, developed independently by 
H. Cartan and Jacobson in the 1940s; see [7], [16]. 

(e) Finitefields. Finite field theory is a thriving subject of investigation in its own 
right, but it also has important uses in number theory, coding theory, geometry, 
and combinatorics; see [6], [9]. 
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