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10766. Proposed by Szildrd Andrds, Babe$-Bolyai University, Cluj-Napoca, Romania. Let 
x ,  y, and z be nonnegative real numbers. Prove that 

(a) (x + y + z)X+"z xXy?'zz_< (z + x)"~.(X + y)x+Y(y + z ) ~ + ~  

(b) (x + y + z ) ( ~ + ~ + ~ ) 2yY2 
ZZ 

2 L (X+ ~ ) ( x + Y ) '  (z + X ) ( ~ + x ) 2 ,X ~ 2  (y + z ) ( ~ + z ) ~  

SOLUTIONS 

Cramer's Rule for Non-Square Matrices 

10618 [1997, 7681. Proposed by S. Lakshminarayanan, S. L. Shah, and K. Nandakumal; 
University of Alberta, Edmonton, Canada. Let A be a real m x n matrix of full rank with 
m < n and let b be a real m x 1 matrix. For 1 5 i 5 n,  define 

det(ATAT) - det(AiAT) 
Xi = 

det(AAT) 

where AT is obtained by replacing the ith column of A by b, and Ai is obtained by deleting 
the ith column of A. Show that x = [ x ~ ,. . . , x,lT is a solution to the linear system Ax = b. 

Solution by the GCHQ Problems Group, Cheltenham, U. K. We write A' (b) instead of AT 
to emphasize the role of the vector b; thus A' (0) indicates A with its ith column zeroed out. 
Observe that A ~ A T= A' (0)AT,by comparing corresponding entries. 

Extend A to a nonsingular n x n matrix (:), where C is an (n -m) x n matrix whose 
rows form an orthonormal basis for the orthogonal complement of the row space of A. That 
is, each row of C has norm 1 and is orthogonal to all other rows of (:). We have 

(:)(5)'=("tT ) and = ( A ~ ( ~ ) A ~I 'M )  

where I is the (n - m) x (n - m) identity matrix and M is some n x (n - m )  matrix. 
By substituting these computations into the definition of xi, canceling the nonzero factor 

(:) det 
T 

, and using the linearity of the determinant in its ith column, we obtain 

det ((A?)) (:)
 T, - det (("7')(:lT) - det - det (A2i)-- det (:)'(:)
Xi = 

det (3 detc:) ' 

bBy Cramer's rule, x is the solution to the linear system (:)x = (o), and hence x is a solution 
to Ax = b. 

Solved also by J. Fuelberth & A.  Gunawardena, J. H Lindsey II, M Sharma & P. G. Poonacha (India), WMC Problems Group, 
and the proposers. 

An Identity for Strongly Connected Digraphs 

10620 [1997, 8701. Proposed by James Propp, Massachusetts Institute of Technology, 
Cambridge, MA. A digraph on a vertex set V is a subset A {(v, w): v ,w E V, v # w} 
and is strongly connected if it is possible to get from any vertex a to every other vertex e 
by a finite succession of arcs (a,  b), (b, c), . . . , (d, e) in A. For n 2 1, let E, (respectively, 
0,) denote the number of strongly connected digraphs on the vertex set V = {I ,2 ,  . . . , n} 
with an even (respectively odd) number of arcs. Show that En - 0, = (n - I)! for all 
n 2 1. 

Solution I by the propose6 currently a t  University of Wisconsin, Madison, WI. The termi-
nology of the problem statement is somewhat nonstandard. In common usage, a digraph is 
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