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Quadrilateral Center of Gravity 

10662 [1998, 4641. Proposed by Joseph D. E. Konhauser and Stan Wagon, Macalester 
College, St. Paul, MN. Find a construction for the center of gravity of the edges of a 
quadrilateral. 

Solution by the Con Amore Problems Group, Royal Danish School of Educational Studies, 
Copenhagen, Denmark. If G is the center of gravity of the edges of the quadrilateral AB C D 
then G is also the center of gravity of particles wrth masses proportional to the lengths of 
the edges A B ,  B C ,  C D ,  D A  placed at the midpoints P, Q ,  R, S of these edges. Construct 
these midpoints. The center of gravity for the particles at P and R is the point T on P R  
such that PT : TR = C D  : A B ,  and the center of gravity for the particles at Q and S is the 
point U on QS with QU : US = D A  : BC, so we construct the points T and U .  If T and 
U coincide, we have G = T = U .  If not, then G is the center of gravity of particles with 
masses proportional to the lengths of the line segments A B  +C D  and BC + D A  placed at 
T and U ,  respectively. The sum of two line segments is constructed by placing them end 
to end. Thus G is the point on T U with T G  : GU = ( B C  + D A )  : ( A B  + C D ) ,and we 
construct this point. 

Solved also by M. Benedicty, M. Boase (U. K.), G. D. Chakerian, R. J. Chapman (U. K.), S. S. Kim (Korea), J. H. Lindsey 11, A. 
Nijenhuis, V. Pambuccian, C. R. Pranesachar (India), A. Sasane (The Netherlands), J.  Schaer (Canada), Anchorage Math Solutions 
Group, GCHQ Problems Group, and the proposers. 

Logarithmic Convexity of Stirling's Ratio 

10680 [1998, 6661. Proposed by Harold G. Diamond, University of Illinois, Urbana, IL. 

For x > 0 set g ( x )  = + l ) / ( x x e - I6)).x log ( ~ ( x  Show that g is concave down on 

(0300). 

Solution by Nathaniel Grossman, University of California, Los Angeles, CA. It is enough to 
show that g"(x) < 0 when x > 0 .  We begin with Binet's second expression for the gamma 
function, which we write in the form 

log r ( x  + 1 )  = ( x  + -) 1 
logx - x + -1 

log(2n) + 2k(x ) ,
2 2 

where k ( x )  = Jr - 1 ) - l  d t  ( M .Abramowitz and I. Stegun, Handbook of a r c t a n ( t / ~ ) ( e ~ ~ ~  
Mathematical Functions, Dover, New York, 1972, p. 258 (6.1.50)). From (*) we find that 
g ( x )  = 2xk(x ) ,hence g"(x) = 2 (xk"(x)  + 2k1(x)) .Easily justified differentiation under 
the integral sign leads to 

in which the right hand side is clearly negative. 

Solved also by J. Anglesio (France), P. Bracken (Canada), D. Bradley, E. Camouzis (Greece), R. J. Chapman (U. K.), R. A. Groen- 
eveld, D. Krug,0.P. b s s e r s  (TheNetherlands), R. Martin (U. K.), A. McD. Mercer (Canada), P. Simeonov, A. Stadler (Switzerland), 
and NCCU Problems Group. 
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