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Some Fundamental Control Theory 11: 

Feedback Linearization of Single Input 


Nonlinear Systems 


William J. Terrell 

I. INTRODUCTION. In Part I of this article [12] we characterized the single- 
input single-output linear 

where A is 11 x n ,  x and D are n x 1, and c is n x 1, that can be transformed by 
a nonsingular linear transformation, z = Tx, to a linear corlzpnrziorz form 

which has the desirable property of conzplete corztrollaDility. By the use of state 
feedback, u = fi with K a 1 x 1.1 matrix, such systems may be expressed in the 
particularly simple form, 2;")= u, where u is a new reference input that is 
available for control purposes. 

For convenience we s u ~ n ~ n a r i z e  the main result of Part I in Theorem 1; see [12] 
for definitions of the relevant concepts. 

Theorem 1. Sjste~z( l a )  can he tlnrz~forn~ecl linear. tr~an~fon?zatiorz, Dy a ~lor~~ir~gular. 
z = Tx,to the companzolz system (21, z f  and ordj ifr-~lrzlc [ hA/>. . . An- 'h ]  = 12 (( la)  i~ 
conzpletelj cor~tr-ollnhle). Wlzerz flzi~ is tlze case, T is urziq~ie arzcl 

~vlzere.r i~ the unique sollrttor~ o f  

.r [ hAD..  . A " ' / > ]  = [U. .  . 0  11 = clT. (4) 
Tlzere exists u ~zorzsingular tmrz~fortnation z = Tx tt~lkir~g( l a )  to tlze corqvarziorz ylPter?z 
( 2 )  with zl= J = c7x, if nr~d orzl~ ~f 
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(sjster?~ ( la) ,  ( lb )  is comn~~letely ohrerunble) ar~r l  

cT[DAD.. . A " ' D ]  = [ U . .  .011 = d r .  
Whelz t l l i~  i~ tlze case, T i~ urziyue alzd i~ tlze n1~it1.i~ (3) wit17 .T = cT. 

Our  main goal in Part I1 is to generalize Theorem 1 for the simplest form of 
single input nonlinear systems. The exposition uses ideas from the theory of 
differential equations, linear algebra, and analysis, and basic concepts in differen- 
tial geometry. The equivalence proble~n we consider is one of the fundamental 
results of geometric nonlinear control theory. The original for~nulation and solu- 
tion of this equivalence problem in the single-input case is due to R. W. Brockett 
[I]. 

We  begin with a calculation that recapitulates the esseiltial calculations that 
established Theorem I .  I t  is also useful in the generalization of Theorem 1. 
Consider the following product of rz x 11 matrices, 

which results when c, A ,  D satisfy cTA"b = 0for 0 I k I 1.1 - 2. If crA"-' b i0as 
well, then both matrices on the left must be nonsingular. In Part I we showed that, 
conversely, if one of the matrices on the left is nonsingular (for some h ,  respec-
tively c), then the other matrix is also nonsingular (for some c, respectively Dl. 
Nonsingularity on the right in ( 5 ) implies an observability condition and a control- 
lability condition [12]. The geometric interpretation of the zeros on the right hand 
side is that the null space of the linear functional y = crx is the (11 - 1) 
dimensional space, s11al1 {b, AD, . . . , A"-'h}. The duality aspects of Part I arise 
from the duality between vectors and linear functionals in a finite dimensional 
vector space. Similar duality considerations in Part I1 involve the pairing of L:ector. 
fields and co-uectorfields (or differ.erzti~~1 l7fo1.17~s). 

If we replace the linear vector field Ax in (1) by f (x) ,  and the vector b by a 
vector field g(x),  we are interested in determining exactly when the resulting 
single input nonlinear system x' = f ( x )  + g ( x ) ~ i  may be transformed to the special 
form y("' = u 11y local coor~lirzate clzruzge and state feedhack. If such a transformation 
is possible, one can exploit the special control-theoretic properties discussed in [I21 
for that special form. In such a case, a nonlinear system can be controlled using 
linear control methods. 

Example 1. Suppose x E R h n d  u E R. Is the system 

equivalent to y'') = u?  What is this equivalence, and how do we determine if such 
an equivalence is possible? 

2. LINEARIZATION AND FUNCTIONS OF RELATIVE DEGREE 17. Consider 
the single-input single-output nonlinear version of ( la)  described by 

. x' = f ( x )  + g ( s ) u ,  (6a) 
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where f and g are smooth vector fields defined in sorue open region :? of R". The 
term .~illoot/z means that the colnponents of f' and g are conti~luously differen- 
tiable as often as required in our discussion. Equation (ha) may be augmented with 
iIIl O~tPut ,  

J1 = 17(s), (6b) 

where 11 is a smooth real-valued fu~lction defined on :&'. We are interested in 
necessary and sufficient conditions u~lder which systenl (6a) is equivalent to a 
linear compiu~lion system. Such an equivalence, if possible, generally requires 
feedback in addition to coordillate change: our examples malce it clear that (41, the 
condition that allows for a coordinate transforrnatio~l rlil.ectly to c o n ~ p a ~ l i o ~ ~  for~n  
in the linear case, cannot generally be expected here. 

2.1 Input-Output Linearization. As in the linear case. we can try to use a I<nown 
output lz to help define a local coorcli~late change. z = T(x),and state feedback, 
u = Q(X)+ ,B(x)u (with ,B(s) f O), in il ~leigllborhoodU of soi11(6). to produce a 
linear input-output equation, 

y ' / '  = U .  (7) 
i n  (71, u is called the new r.efel.erzce ~ I I ~ I L L ~ ,  = 11 in order ancl we would like to have j 
to capture the full 11-dimensional dyna~llical system. This is the Illput-Output 
Linearization Proble~n (IOLP). The idea is that feedback by 11 = a ( x )  simplifies 
the systeru equatio~ls by cancelling nonlinearities when possible, and then subse- 
quent controls r; are available to control the dynamics in a desired manner. 

The next definition recalls the behavior of the special outputs that yield 
observability ~1r1d a companion form ill the linear case of [12]. The clefinitio~l is 
~notivatecl by the form of the terms that appear when a fu~lction is differentiated 
repeatedly along system (6a). 

Definition 1. The Lie derivative of a real-valued fu~lction Iz along a vector field g 
is the real-valued function L,h defined by L,,ll(s) - ~ l h ( s )  . g ( s ) ,  where dh(s)  is 
the row gradient of 11 at s. For iterated tlerivitives of this type we write L',:II = 11. 
and L';,II = L, (L':  '11). The function 11 has izlafiue clegi.ee j 2 1 with respect to 
(6a) at"the point ,;,, if 

(i) ~ , ~ ' j l z ( x )  u a ne~ghborhood of x,,for all O Ilz < 1 - 1.= 0 for all III 


and 

(ii) LqL\- ' lz(xo)# 0. 

The relative degree is the number of differentiations of h along the system that 
are needed to make LL appear explicitly. Thus, for relative degree j = 1 ,  note that 
only condition (ii) is relevant. There may be points x,, where a relative degree for a 
function is not defined. By continuity, conditions (i) and (ii) allow LIS to speak of a 
functio11 11 having relative degree j irz LLIZo11e1,ell set U containing s,,. 

Example 2. Consider the system 

s;= si~lx,  

.uj = s f + L l .  (9) 
The function y = h(x) = x, has relative degree 1 at all points since L,ylz(s) == 1. 
011the other hand, J, = h(x)  = x, satisfies L,h = 0. and L,? L ,  h(x) = L,,(sinx,) 
= coss,, so this function has relative degree 2 at the equilibrium s,,= 0 of the 
unforced system. 
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Functions having relative degree rz are especially useful. Theorem 1 illustrates 
why linear functionals of relative degree rz were central in [12]. 

Suppose an output y = h(x) has relative degree rz at .yo. Then y and the first 
n - 1 time derivatives of y along (6a) yield the equations 

In Proposition 2 we show that if 12 has relative degree 11 at x,, then the vector 
function [h L f h  ... ~ ' ; - ' h ] ~has nonsingular Jacobian with respect to x at xo; 
thus, the functions ~ ; h ( x )  for O 5 k I11- 1 can be used as component functions 
in a nonlinear coordinate transformation defined locally around xO. The presence 
of the nonzero function L,L';-'h(x) as a coefficient of u prevents us from 
obtaining the linear, controllable companion form for z = [ y ,y', . . . ,y("- ' ' ]  by 
coordinate transformation alone. However, the coordinate transformation together 
with .state feedback does produce the simple form, y("' = U .  We need only define 

where u is the new reference input. This situation allows for control action on the 
nonlinear system by operating with the linear controllable form (7) (with j = 12). 
Note that an assumption of relative degree j < rz leads to a linear input-output 
relation (7). Relative degree n of I1 at x, is a type of local obseivability condition: 
with u = O, the Inverse Function Theorem [9, p. 1931 applied to (10) implies that x 
is determined by [y, y l , .  . .,y ( " l ) ]  near x,. 

2.2 Input-State Linearization. If a relative degree n function is not readily avail- 
able as an output function, we still ask for a local coordinate change, z = T(x), 
and feedback L! = a ( x )  + p(x)u with D(x) iO near x,, that produces a corzt1.01- 
lable linear system for z. This is often called the Input-State Linearization Problem 
(ISLP). As shown in [12], given a controllable linear system, an additional coordi- 
nate change and state feedback may be used to produce the linear system 

O 1 0 ... 0 0 
0 O 1 ... . 0 

z l = N z + d  . . . i - z +  (12)1: : : 
0 

0 O 0 ... - 1-

where N is the standard nilpotent block with ones on the superdiagonal and zeros 
elsewhere, and d = [O.. . 0  1lT as usual. Thus we take the ISLP to mean the 
problem of achieving the form (12). 

Our first goal is to show that the ISLP is solvable if and only if there exists a 
function of relative degree 11 at x, for (6a). We have already discussed the 
sufficiency of the relative degree n condition, though the proof of Proposition 2 is 
needed to complete that discussion. After the next example, we show that solvabil- 
ity of the ISLP implies the existence of a function A(x) of relative degree n at x,, 
-namely, the first coordinate function T, of the transformation T. Our ultimate 
goal is to derive computable geometric conditions for the existence of a relative 
degree n function. 
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One can adopt the point of view that there is no essential mathematical 
difference between the linearization problems IOLP and ISLP when a relative 
degree n function exists-the difference lies in whether there is an e,~-plicifk klz0~)11 
output fu~lction of relative degree 11, or if such a function must be constrzicted. 
From the practical point of view, of course, this is an essential difference. We 
return to Example 2 to illustrate an important consideration. 

Example 3. Consider again the system, 

x; = sins, 

It is easy to li~learize the input-output behavior; take y = s?, and set L[ = sf+ u, 
which produces the linear input-output relation y' = u. This relation would make 
it easy to track a xpecijiecl output y ( t )  = .L-,(t) by control u, but the linearizing 
control u would make x ,  unobservable if it is o~llp the resulting input-output 
relation )I' = u that is considered. Thus, some of the original two-dimensional 
dynamics is hidden by the input-output relation. The presence of such unobserv- 
able dynamics introduces the question of internal stability for that dynamics; the .L-, 
variable map not remain well-behaved (e.g., bounded) when using a control 
strategy based on the relation y' = u.For example, suppose we wanted to hold the 
output y = .v2 via feedback at a constant value, x2 = c. Then the s, solution 
would be x,(t) = x,(O) + tsinc, and therefore x ,  -,= as t -,=. 

We cow show that a solution of the ISLP entails a relative degree 17 function. 
Suppose the ISLP is solved, so that the transfor~natio~l z = T(.L-), cornbi~led with 
feedback 11 = a ( x )  + p(x)u, produces the linear system (12). From the defi~litions 
of the variables, this occurs if and only if 

where equality holds for ~ l l l11 = c u ( . ~ - )  + /3(x)u, with u arbitrary. By considering 
~1 = 0 and u = I, wc scc that (13) is equivalent to the two partial differential 
equations: 

N T ( s )  - da (x )  /3- '  (s)= [T?(x)  T3(.v) . . . 7 ; , ( . ~ - )- a ( x )  p- '  ( x ) ]
7' 
, 

and 

This allows us to display (144  in detail: 

dT,(x) . f ( x )  = L,T,,(x) = T,,+,(x) ,  k = 1 , .. . , / I  - 1, (15a) 

and 

O , , ( x )  . f ( x )  = - a ( x ) p - ' ( x ) .  (15b) 
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Therefore all components of T are determined by the fitst component TI .  And the 
last equation specifies the ratio, - a (x )P ' ( . v ) ,  in terms of TI .  Similarly we display 
(14b) using (15a) and Definition 1: 

~T, ,+ , ( .Y). g ( x )  = L,L';T,(,Y) = 0, k = o , . . . , r z  - 2, (16a) 

while 

Thus, by (15a) and (16), tlze sol~ltlor~ of the ISLP req~1u.e~a f~inctlorz Tl(x) flznt has 
relntlue degree 11. Given T,, the rest of T is then defined by (15a), and the required 
feedback LL = a ( x )  + P(I) u is determined by 

Notice that an equilibrium point of interest, say x, such that f(x,) = 0, can always 
be transformed to z = T(x,) = 0: by (154, we need only require that T,(x,,) = 0. 
We summarize the preceding discussion as follows. 

Theorem 2. Sy.~tem( 6 4  can be tran.yforrned by coolvli/znfe t/zrrz.yfo/nzution z = T(x) 
untl stclte feedback LL = a (x )  + P(.u)u irz a ~zeigl~borlzoodof x,, to tlze lirzear. contl.01- 
I~rble form z' = Nz + clu if and orzljl i f  there exists a f~inctiorz A lzauirzg relative clegrve 11 

with respect to (6a) at the point x,. When this is the case, T is deternzirzetl bjl (1%) by 
clefirlirlg the first cornporzer~t f ~ l ~ c f i o n  A, N I Z L ~  the feedbuck is deter771inecl I?)' TI = 

hjl (17). 

Proof Eve~ything has been proved except the legitimacy of the coordinate change 

when A has relative degree I I  at ,u,,. This argument appears as part of a more 
general statement in Proposition 2. Assuming this result, Theorem 2 follows. E 

Let us illustrate these ideas, and the general of T inrzor1~4niquer~es.s the 
nonlinear case: 

Example 4. Consider the system in Example 3 near the equilibrium x,, = 0 of the 
unforced system (with ~4 = 0). The equations (16) for TI are 

Using g = [O 11' we see that TI is independent of x2,so T2(x) = (dT,/ i ix , )  sinx,. 
The nontriviality condition becomes 

which holds as long as cosx2 # 0 and d TI /dx ,  # 0. One solution is T,(x) = x , ,  
which we used in Example 3. The choice is not unique: Tl(x) = x ,  - x; also works 
near x,, = 0 in fulfilling the conditions of Theorem 2. 

Example 5. Using Theorem 2 we can show that Example 1 is not input-state 
linearizable. The vector field g in Example 1 is g = [ l  0 017-. Let A be a smooth 
function, and suppose L,A(x) = (ilA/dx,)(,~)= 0 for x in an open set U ;  then A 
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is independent of x ,  in U ,  so A = h(x2,x?) there. If we also impose the condition 
that L , L ,  A(,Y) = 0 in U , then wc have 

and it is not possible for this to hold in U when A = A(x l ,  s,). Thus, there is no 
function having relative degree 3 with respect to this system in any open set in R'. 

3. PdECESSARY CONDITIONS FOR IS&? SOLVABILITY. We've seen that an 
"artificial output" T, of relative degree 11  is determined by a ~~o t~ t l . i u i~ l lsolution of 
the partial differential equation system ( Iba ) ,  the nontriviality condition being 
( I6b ) .  When is this first order partial differential equation system solvable'? We 
want computable conditions for solvability directly in terms of f and g .  Let us first 
consider necessary conditions, and for that, a nonlinear version of the calculation 
in ( 5 )  is helpful, with an appropriate generalization of the colun~ns b,  A h , .  . . in 
(5 ) .  This analysis of necessary conditions conlpletes the proof of Theorem 2 and 
leads to the computable criteria we seek. We should remark that there are indeed 
local observability and controllability conditions involved in what follows, as you 
might expect. After all, we are transforming to a linear system with the properties 
of controllability and observability. We discuss a local r.eaclz~lbilityproperty after 
the maill Theorein 3-this property is related to, but weaker than, complete 
controllability. For now, we continue to focus on the goal of generalizing the 
transformation to companion form statements of Theorem 1, but in the process 
we indicate the intuition involved in generalizations of the linear controllability 
criterion. 

Let us consider ( 5 ) :  we replace the first matrix on the left by 
[[[A dL , .A . .  . [IL';-'A].', where A has relative degree n ,  and we p ~ ~ t  g ( x )  in place 
of /I in the second matrix on the left; we then need vector fields to replace 
A b , .  . . , A " - ' / I .  That is, we need to identify the null space of the differential clA. 
The appropriate vector fields can be motivated either analytically or algebraically, 
and we consider both aspects in order to build some intuition. 

The next definition can be motivated by the calculation of Proposition 1, but it 
is co~lvenieilt to state it here and follow it with an important example. 

Definition 2. The Lie bracket [ g , ,  g l ]  of two vector fields g , ,  gl is the vector field 
defined by 

Here is a notation that helps with iterated brackets: define crd,~,'lg,= g 2 ,  n d X l g ,  = 

[ g , ,  g 2 ] ,  and ndb g ,  = [ g , ,  a d i l ' g , ]  for k 2 1. The brackets described in (18)  ase,?, 1 

important in the linear system case: 

Example 6. If f ( x )  = A x  and g ( s )  = D, then [ f ,  g ] ( x )= -AD. Also, a d f g ( x )= 

[ f ,  [ f ,  g ] ] ( s )= A'b, and in general, crd;g(.t) = ( - l ) L ~ " / ~ .  

Exainplc 6 suggests that the brackets ar l ;g(x)  ale important in the nonlinear 
case. To confirm this. we consider an analytic relation involving f and g.  Write 
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b: ( x )  for the time t solution map of the differential equation x' = q ( x ) ;  that is, 
d ; ( x )  = s and i i c b ~ ( s ) / i i l= q(cb:(s)). Then ( d y ) - '  = 4'7, where defined. Also 
write (4 : )  for the derivative map with Jacobian matrix dcl,:/ii.r. The uar~intiorzal 
differential eq~latiorzsatisfied by (cb:) is the equation 

to prove this relation, one differentiates the identity d/d t (+:(x) )  = q(cb,Tx))  with 
respect to x and then i~lterchangesthe order of differentiatio~lswith respect to 
I and t .  It is also useful to have the variational equation for ( 4 2 , )  = (cb:)-': 
the formula 

for the derivative of the i~lverseof a nonsingular matrix function of t ,  applied to 
A = (d : )  , gives 

Now consider following the flow of f (the vector field in ( l a ) )for a short time t ,  
to the point cb,'(x,,); then determine the direction vector ( f  + g ) ( d ~ , ' ( ~ , , ) ) ,the 
direction you would move if you turned the co~ltrolL L  "on" with ~1 = 1; and, finally, 
transfer this tangent vector back to the point x,, by applying ( d ! , )  . Thus, 
consider the "cuwe of tangents7' based at x,,, 

V < t >= ( d ' , )  ~ ( 4 / ( - ~ o ) ) ,  ( 1 9 )  

where q = f + g ,  and more specifically, the derivative V ' ( 0 )  at t = 0.  By consider-
ing shorter and shorter times t ,  it is plausible that the vector V ' ( 0 )  (and also the 
higher order derivatives of V at t = 0 )  should indicate something about the 
directions we might move, starting at s,,, by some suitable "off-on" switching 
strategy for the input LL.This can be made precise, in a way that provides an 
alternative motivation for the Lie bracket operation; see [8, Proposition 3.6, 
pp. 77-78] or [7, pp. 323-3241. We have motivated (19)  here because it is useful in 
the proof of the main Theorem 3. Notice that the construction in (19)  is valid for 
anj3 vector field q ,  although q = f + g is the immediate interest. 

Proposition 1. Tlze talzgetzt vector V ' ( 0 )  of tlze curne (19)  0vlzel.e q = f + g) i~ 

V ' ( 0 )  = [ f ,  ~ l ( , ~ , l )= [ f ,g l ( - r , , ) .  
I f f  nrzd g n1.e ~inalytic,tlzelz V ' " ' ( 0 )  = nd;g (x , , )  for ~rllk 2 1. 

Prooj: Use the formula for the derivative of a product, together with the varia-
tional equations, to compute 

= (cb! ,)  [ f l ~ l ( d / ( - y o ) ) .  ( 2 0 )  

Set t = 0 to get V ' ( 0 )  = [ f ,  q ] ( x , ) ,  taking into account the initial collditio~ls 
~ L ( x )= x and (el,:) = I. Si~lce[ f ,  f + g ]  = [ f ,  g ] ,  the first \tatenlent is proved. 
Given (201, the second statement follows by induction. 
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Because of Proposition 1, the Lie bracket [ f ,q] is also called the Lie rleriu~~tiue 
of q nlorig f .  

The algebraic property that shows the connection between the Lie bracket 
operation on vector fields and the Lie derivative operation on functions is the 
Jr~cobi identit)); it says that if u, w are vector fields and A is a smooth function, then 
( L,,,,,.,A)(x )  = ( L , L , ,  A - L, ,  L,A)(.v). This identity is proved as follows. For any 
smooth A, and any x ,  

L ,  L ,  A ( x )  - L, ,  L ,  A(.v) = L , ( r l A ( x )  . ~ ( x ) )- L, ,  (dA(.v)  . ~ ( x ) )  

whcrc d2A(x) is the matrix of second partial derivatives of A at s .  Sincc d2A is 
symmetric, we get 

The Jacobi identity itself helps to identify ker rlA(x) for x t U ,  for a function A 
having relative degree n .  Given g as the replacement for b in (51, and assuming 
that & ( x )  . g ( x )  = 0 ,  one can show that a d f g ( x )  t ker clA(x) for /< = 1,. . . n - 2 
by induction, using the Jacobi identity. W e  now give the details of the nonlinear 
version of the calculation in (5).  

Proposition 2. If A /Ins relatiue degree r z  witlz reypect to (6a) in tlze open set U ,  tllen 
for all x E U ,  

( 1 )  t l ~ ecouectors r/A(.v), d L f A ( x ) ,  . . . , LILY- ' A ( s )  are lozectrl~l irzrlependent; 
( 2 )  tl7e uecton g(.v), n d , g ( x ) ,  . . . , n d ; ' ' g ( x )  are 1inerir.ly indepenclent. 

Proot Consider the matrix product that generalizes (5):  

We now use the relative degree n assumption and the Jacobi identity to show that 
the matrix on the right in (22) is lower right triangular with nonzero entries on the 
skew-diagonal; Proposition 2 then follows. 

By relative degree n ,  the first column has the required form. Proceed by 
induction on the colun~ns,  using the Jacobi identity. Now the k,  I entiy in the 
matrix is ( r l L ; h ) .  for P 5 k, I In - 1. The diagonal entries in question 
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arc thosc for which k + I = 11 - 1. Assumc the desired property for column I :  
thus, assume that L ,,,,;, Lth  = 0 for k + 1 I 11 - 2, and L ,,,,(, L;-"lz # 0.For 
column I + 1 wc nccd L,,,liT~,L';h = 0for k 5 n - 3 - I, and L,,,liiI, L';-'-'ll # 0. 
Using the Jacobi identity, column I + 1 is, for 0Ik I n - 1: 

( k ,  I) entry = (clL;l~). (ad;-Ig) = L, Ltl,,;,L)ll - L ;,,,;; L',+'/I .  (23) 

Apply the hypothesis to (23) tor It = 0 , .  . ., IZ - 3 - I to get zero. For k = 

n - 2 - 1, only the last tcim in (23) contributes to thc skcw-diagonal entiy, 
which is 

Ln-1-1
-L,,,;, , + 0. 

Notice that this is the neg~~tiueof the skew-diagonal entry in column I. Since the 
first column has last entry L,L;',-lh(x-), the diagonal entry in column I must 
therefore be ( - 1)'L, L;'-'lz(x) # 0 for 1 = 0 , .  . . ,n - 1. Thus, our matrix is lower 
right triangular with nonzero skew-diagonal entries for s E U. 

Notice that Proposition 2 conlpletes the proof of Theorem 2, because it shows 
that if A has relative degree n then the vector function 

has a nonsingular Jacobian for x t U. 
As in ( 5 ) ,  a geometric interpretation of Proposition 2 is that the null space of 

the differential dA(x) is the ( n  - 1)-dimensional space 

9 ) = I { ( x )( ) . . . ,- ( x ) x C u. (24) 

We view each subspace B(x) as a subspace of the tangent space of R" at x, 
T,R" = R". The collection of the subspaces (24) for x t U is called a distl.ibutiorz 
on U. In the linear case, a constant distribution such as span {D,  AD,. . . , A n ' b )  is 
auton~aticallpthe 11ul1 space of a nonzero linear functional. Propositio~l2 shows 
that the nonsingularity of both factors on the left in (22) is necessnly for the 
solution of the ISLP. Under the assumption of Proposition 2, there is an additional 
necessary condition on the distribution (24), which is not revealed in the calcula-
tions of Proposition 2. The additional condition on 9 ( x )  is the geometric condi-
tion of inuolutiuitl)?Involutivity is an integrability condition that guarantees that the 
distribution (24) is the space annihilated by the differential of a function having 
relative degree 1.1. The next section examines this concept, and develops the 
geometric conditions for the solvability of the ISLP. 

4. GEOMETRIC CRITERIA FOR ISLP SOLVABILITY. It's coilve~lientto place 
some formal definitions here. 

Definition 3. A distribution 9 on U is a smooth assignment (via functions like 
g, adfg, etc. in (24)) of a subspace of the tangent space T,U = R", for x E U.  
A distribution 9 ( x )  is i~zuol~~tiuein U if, for vector fields u ,  and u,, and all x E U ,  

u, (x) ,  u2(x)  € 9 ( x )  - [ u , ,  u2](x)  € 9 ( ~ ) .  

A distribution G? is noizringulrrr in U it dim P ( x )  is constant in U.  A nonsingular 
distribution G? with dim 9 ( x )  = k is integ~ablein U if there are ~z - k functions 
A ,  such that rpan {&,(XI : 1 Ij I rz - k} = 9' (x),  or equivalently, 
n::; ker clA,(x) = g ( x ) .  . 

November 19991 FUNDAMENTAL CONTROL THEORY 11 821 



To illustrate the involutivity concept, we return to Example 1. 

Example 7. The distribution (24) for Example 1 is 9 ( x )  = spa11 {g(x), adlg(x)}. 
Appropriate bracket calculatio~ls for Example 1 give 

and then 

If we form the matrix 

we see that its rank is everywhere equal to 3. so that [g,  adlg](x) does not lie in 
N x )  for any x. It follows that the distributio~l 9= ~p.ya~z{g, adlg} is not involutive 
in any open set. Compare this situation with Example 5 .  

Frohe11ius'T/leore~71states that for a nonsingular distribution 9 (of nr~ydimension), 
integrability is equiualerzt to involutivity [4, p. 231. The following discussion of the 
ideas of Frobenius' Theorem in the case of interest for the Input-State Lineariza- 
tion Problem uses virtually all the tools discussed so far. 

It is easy to show that involutivity is rzecessni?l for N x )  in (24) to be the tangent 
space at x of the level set within U of a smooth function A having relative 
degree 1 1 .  If A has relative degree ?z at x,,, Propositio~l 2 shows that 
[g(x) ad,g(x) .  . . ad;'-'g(x)] has rank ,I for all x E U ,  so the distribution 9 is 
nonsingular with constant dimension 11 1 in U. Moreover, we have-

clA(x)[g(x) ad,g(x) . . . ad;'-"(x)] = 0. Thus, the pointwise orthogonal comple- 
ment of -9in U is -9'= sparz {dA}. This says that the distribution 9is integrable 
on U.  We now show involutivity directly. If 0Ii, j I n - 2, then for x E U ,  

since A has relative degree 11. Therefore [adkg, adjg](x) ~ - 9 f ( x )  for all x in U. 
This is sufficient to show that -9is involutive, since any two vector fields in -9are 
linear combinations of the ones we just dealt with, and one can show that for fields 
5, 7 in 9 and functions a ,  b, we have 

To establish (25), use the Jacobi identity plus the characterization that vector fields 
u, ~v are equal if and only if L,,A = L,,A for all smooth functions A. 

Theorem 3 provides the goal of computable geometric criteria on f and g for 
the solution of the Input-State Linearization Problem. I~lvolutivity is the necessaly 
alzci sufficient integrability condition for the system of partial differential equations 
(16a). 
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Theorem 3. Tlze yyyten? x' = f ( x )  + g ( x ) u  1~ ~rzpur-ytnte hrzear?znhle rn a 17elglzbor- 
Iiood U of x,, l f  (rliti orzl~l r f  

(1)  [  (  l  g ( . . . '  g  (  t , , ) ]  hcl5 1 ~ 1 1 7 / ~11 ,  C I I ~ L /  

(11) the dlst1~b~itro17 9= { g ,u d ,g ,  . . . . ad;  - l S }  I S  r l iuo /~~t~ueU .S ~ N I I  111 

Proof We show that ( I )  and (11) are equivaJent to the existence of a function h 
having relative degree 11 at s,,.Necessirl), of ( I )  is covered by Proposition 2, and 
necessity of (11)was discussed before the theorem statement. 

S~!flficierlcy.If ( I )  and (11) hold, then the distribution is nonsingular on U with 
dimension 11 - 1. Clearly, there is a smooth covector field in U defined by a 
sinooth row vector M ( X )  such that ~ c , ( x )= s11n17 9~' (x) and also ~ v ( s ) .~ ic l ' , ' - ' g ( x )  
# 0 for x E U. Thus, for all s E U ,  we have 

The function h call be constructed from the flows of these vector fields. To 
simplify notation for this argument. define u ,  = g ,  u, = ( / d i g ,. . . , u , , , = 

( [ ' j l !  

1 
-2 

g ,  
U', = I .V.  

Let U, be a ball of radius E about tlie zero vector in R". There is an E > 0 such 
tliat the map t,b : U, -, t,b(U,) c U defined by 

i b ( z )  = c / ~ ( z , ,. . . , z , , )  = di,' 6;: . . .  0 d i , ( . x l r )  

is a diffeomorphism onto its image. that is, ib is smooth, one-to-one, and has a 
smooth inverse map defined on t,b(U,). This is because repeated application of tlie 
chain rule shows that at z = 0 we have 

and by hypothesis, the vectors u,(x, , )are independent. Thus, tlie Inverse Function 
Theorem ensures tliat there is an E > 0 so tliat r,b is a local diffeolnorphism onto 
its image. The z coordinates are time coordiliates that "straighten out" the flows 
for the vector fields u,. Write the inverse of ( i ~in the form 

Now consider (26)  together with tlie identity 

The strategy is to show that dh , , ( x )spans 9'( s ) ,by showing tliat tlie first 12 - 1 
columns of (dt,b/ilz),=,!,(;)form a basis of 9 ( x ) at any x E U ,  for then (27 ) i~nplies 
tliat s l~an{dA, , (x ) )=9'( x )  for x E U .  

Using the chain rule, we find that tlie i-th column of dil//dz is 
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where we use the fact that ( < / I ~ I ) - '  = 6!. for the local flows of the u,. If we show 
that, whenever 5, 7 are vector fields that are pointwise in -9we also have 

(47 )  t ( d P , ( x ) )G ~ ( , Y ) >  

then it follows that the column vector (iiil//i/z,),=,,-I (,, is also in 9 ( x ) . Since any 
vector field t in -9can be written as Cc,u, for some functiolls c, in 27,we need 
only consider the case when < = r;, for some i,.= 1, .. . , 1 1  - 1. 

Thus, for a vector field 7 €53,let x be a fixed point in -9,and set 

( t )  = ( 4 , ) u ( I ( ) )  i = 1, .. . , IZ - 1. ( 2 8 )  

The vector functions I/; are defined for some interval of t about 0. It follows from 
Proposition 1 that 

Since 27 is involutive and 7, u, E-9,there exist functions a I j  defined around x 
such that 

1 1 - 1  

[ 7 ,~ , l= C a,juj. 
/ =  i 

so that 

Thus, V = [ V ,. . . y ,_ ,] is a matrix solution of a linear system of differential 
equations having the form V'  = V A ~ ,where A - [a , , ]and 1 Ii, j In 1.-

Therefore we can write 

[ V l ( t ) .. . Y , - , ( t ) ] = [VI (O) .. . Y , - , ( O ) I X ( ~ ) ~  (29)  

where X ( t ) is an ( n  - 1) x (11 - 1) fundamental matrix of solutions. Multiply (29) 
from the left by (</I:) and use (28) to get 

Now, for small t we may replace x by +Z,(x) on the same orbit to get 

[ u l ( x ) .. . r ; , , - ~ ( x ) ]= [ ( d : )  u l ( 6 ! , ( x ) ) .  . . ( < / I ? )  ~ , , - l ( < b ~ , ( x ) ) ] ~ ( t )  

Since X ( t )  is nonsingular, we get for i = 1 , . . . , n - 1, 

The proof that the colum~ls d(i~/i/z,are in 9 for i = 1 , . . . , n - 1 is now 
complete. 

It remains to show that A,, satisfies the nontriviality condition required for 
relative degree n.  But from the identity (27) and the conditions (26)we have 

Thus, clA,,(x,) is parallel to w(x , )  (x , ) ,  SO dA,,(x,). ad; ' - 'g (xo)  f 0. Now 
apply the Jacobi identity to 
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to conclude that -Lo,;-?,  L f  A = (- I )" - 'L ,L';-'h(xO)# 0.Therefore A,, has 
relative degree n in some open set in U. w 

The proof of sufficiency in Theorem 3 follows the proof in [4, pp. 24-28] that 
involutivity implies integrability. We really needed a particular codirnension one 
case of Frobenius' Theorem, where dim =gL= 1 and -9is the special distribution 
in (24);however, the argument for the general case is much the same. 

Returning to Example 3, conditions (I) and (11) of Theorem 3 are easily 
checked: (I) holds near x ,  = 0, and (11)holds trivially since 9 ( x )  = span { g ( x ) }  = 

span {[0 1IT} is one-dimensional. In fact, in dimension n = 2, conditions ( I )  and (11) 
reduce to the single condition that 

because then g ( x )  # 0 in some open set about xO 

Example 8. The result of Example 7 showed that condition (11)of Theorem 3 does 
not hold for the system of Example 1. Let us check that condition (I) does hold: we 
just need to compute 

0 0 

ad?g(x)  = [ f ,a d f g ]  ( x )  = 

then, using the calculations from Example 7, we have 

so the rank condition ( I )  is satisfied at every point. 

We can now discuss condition ( I )  of Theorem 3 as a type of controllability 
condition known as a local reachability condition. 

Suppose f ( x o )  = 0, so that xo is an equilibrium for x' = f ( x ) .  The rank 
condition ( I )  is exactly the condition that the local linearization defined by 

is completely controllable, that is, rank [ b A b . .  . A"- 'b]  = 12. To see this, notice 
that if we write 

f(.) = Rx + f 2 ( ~ ) ,  g ( x )  = b + ~ I ( X ) , 

where (d f , / dx ) ( x , )  = 0 and g,(x,) = 0, then an induction proof shows that for 
each k, 

Indeed, (31) holds when k = 0 because g ( x )  = b + g, (x )  with g,(x,) = 0. The 
induction step follows by an appropriate bracket calculation using the expansions 
for f and g. Thus, ( I )  is exactly the complete controllability condition for (30), 
provided f ( x O )= 0. 

Let us say that a system x' = f ( x )  + g(x)u  is locally reachable at x ,  if there is 
an open set U about x ,  such that every point x E U can be reached from x ,  in 

November 19991 FUNDAMENTAL CONTROL THEORY I1 825 



- 

- 

- - 

- - 

finite time by means of a control u(t). Under the conditions of Theorem 3, the 
nonlinear system is locally reachable at x, because the system is locally equivalent 
to the completely controllable linear system (12), via the coordinate mapping 
z = T(x) for x E U (and z E T(U)), and the feedback transformation u = a ( x )  + 
p(x)u = a(T- 'z)  + P(T-'z)u. For if a control u(t) transfers z ,  = 0 to the point 
zS in time tl while the trajectory z(t) remains in T(U) (and this can be done for 
system (1211, then the corresponding u(t) keeps x(t) = T-'(z(t)) within U. There- 
fore, transfers from x, to any xi.in U can be accomplished in finite time. If only 
the rank condition (I) holds, however, then provided f(x,) = 0, local reachability 
of the nonlinear system at x, can still be proved using the controllability rank 
condition for the local linearization (30) together with the help of the Inverse 
Function Theorem. For one result of this type, which implies local reachability at 
x,, see [8, Proposition 3.3, pp. 74-75]. 

The method of input-state linearization has been successful in addressing 
specific control problems in the areas of aircraft flight control and robotics [lo, 
p. 2071. Here is a final example concerning the equations for a single-link robotic 
manipulator. 

Example 9. [6, p. 5281 [lo, p. 2421 The dynamical equations for a single-link, 
flexible-joint mechanism with negligible damping are 

Iq;1 + MGL sinq, + k(q,  - q,) = 0 

where q, and q, are angular positions, I and J are moments of inertia, k is a 
spring constant, M is a mass, G is the gravitational constant, L is a distance, and u 
is a motor torque input. By writing x = [q, q', q, q;IT, the four-dimensional state 
equations can be written as 

x2 0 

x' = f ( x )  + g ( x ) u  = 
-a  sinx, - b(x ,  - x,) + 0 

Ll ' (32)
x4 


4 x 1  - % I  d 

using these positive constants: a = (MGL)/I, b = k/I, c = k/J, and d = 1/J. 
The unforced system has an equilibrium at x = 0. To determine if this system is 
input-state linearizable near the origin, we check conditions (I), (11) of Theorem 3. 
First, compute 

0 
-acosx, - b 0 b 

d x 0 0 0 1 
c 0 -c 0 

In this case, the spanning vector fields for .&3are constant, and appropriate bracket 
calculations lead to the matrix needed in condition (I): 

Since this matrix has rank 4, condition (I) holds everywhere. It is immediate that 
the involutivity condition (11) holds everywhere, since 9 ( x )  = span{g, adSg, ad;g} 
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is spanned by constant vector fields. By Theorem 3, system (32) is input-state 
linearizable, and the construction of the function T, with relative degree 4 can 
now be attempted. In fact, since we know that the null space of dT,(x) must be the 
flat distribution (linear subspace) defined by span { g ,adfg, ad,j!g}, we take TI to be 
a linear function of x, alone: T,(x) = x,. The complete coordinate transformation 
T(x) is then obtained from (16a), yielding 

Alternatively, one can construct T, directly from (16) for this example: the details 
appear in [6, pp. 528-5291. By defining the feedback transformation u = a (x )  + 
P(x)u according to (17), the equations for z are given by (12); equivalently, 
zj4)= U. A control u can now be designed that makes the link position x, = z ,  
track a prespecified trajectory. 

Clearly, systems that are fully input-state linearizable are very special. Neverthe- 
less, as shown by the analysis in [4, pp. 162 - 1721, if a system is not fully 
input-state linearizable as in Theorem 3, but an output function with relative 
degree r < n is known, then the system can still be transformed to a partially 
linear normal form, which is quite useful in many control problems. As we noted in 
Example 3, the case when r < n requires the examination of unobservable dynam- 
ics (usually called zero djmamics) [4, pp. 163-1641. However, the circle of ideas 
discussed here can be applied to a wide range of problems beyond the special 
conditions of Theorem 3. 

9. FURTHER READING. The equivalence problem discussed here was first con- 
sidered in [I]. For the origin of the use of Lie brackets in the study of reachability 
problems see [3] and the references therein. See also [5, pp. 1-21 for some 
historical insight on the introduction into control theory of differential-geometric 
ideas centered around the Lie bracket. Reference [41 presents important control 
methods using extensions of the basic ideas discussed in this article, and includes a 
development of the required differential-geometric concepts. References [4] and 
[lo] discuss the important issue of stability of unobservable dynamics (called zero 
djmamics) that arose in Example 3, which comes from [6]. Information on control- 
lability, observability, and numerous other issues appears in [8] and [I l l .  Reference 
[8, p. 591 contains a statement of the classical Frobenius' Theorem on integrability 
of a system of linear, first-order partial differential equations. See [6] and [7] for 
some engineering emphasis combined with excellent theoretical exposition. Much 
of the differential-geometric nonlinear control theory generalizes the geometric 
approach to linear control theory presented in [13]. Many references to the 
primary mathematical control literature may be found in the references listed. 
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MATHEMATICS 

C. 0 .  OaMey, Haverford College 

Mathematics is one component of any plan for liberal education. 
Mother of all the sciences, it is a builder of the imagination, a 
weaver of patterns of sheer thought, an intuitive dreamer, a poet. 
The study of mathematics cannot be replaced by any other activity 
that will train and develop man's purely logical faculties to the same 
level of rationality. Through countless dimensions, riding high the 
winds of intellectual adventure and filled with the zest of discovery, 

I 
I 	 the mathematician tracks the heavens for harmony and eternal 
, 	 verity. There is not wholly unexpected surprise, but surprise 

nevertheless, that mathematics has direct application to the physi- 
: 	 cal world about us. For mathematics, in a wilderness of tragedy and 
I change, is a creature of the mind, born to the cry of humanity in 
1 search of an invariant reality, immutable in substance, unalterable 
, with time. Mathematics is an infinity of flexibles forcing pure 
I 	 thought into a cosmos. It is an arc of austerity cutting realms of 

reason with geodesic grandeur. Mathematics is crystallized clarity, 
precision personified, beauty distilled and rigorously sublimated. 
The life of the spirit is a life of thought; the ideal of thought is 
truth; everlasting truth is the goal of mathematics. 

I MONTHLY56 (1949) 19 
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