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The Dirichlet Problem for Ellipsoids 

John A. Baker 

The purpose of this paper is to present two elementary (and perhaps somewhat 
novel) solutions of the Dirichlet problem for ellipsoids in R". One of these is based 
on an elegant result of Ernst Fischer-of Riesz-Fischer fame. 

By the Dirichlet problem (for the Laplacian) we mean the following: Given a 
bounded region (nonempty, open, connected set) R in R", n 2 2, and given a 
continuous function f : dR -, R (called the boundaly data), find a continuous 
function u :  2 + R such that u is C 2  on R ,  

u(x)  = f ( x )  for x E dR-the boundary of R .  

This is surely one of the most influential problems for the development of 
mathematics in the last two centuries; see, for example, [4], [6], and [81. The case in 
which R is a disk in R2 is standard fare for writers of texts on the theory of 
analytic functions of one complex variable. In this paper we are concerned with the 
case in which R is an ellipsoid in R", for arbitrary n 2 2, and especially when f is 
(the restriction to dR  of) a polynomial function. 

1. BACKGROUND AND NOTATION. Let 2 I n E Z. For x = (x, ,  . . . ,x,,) and 
y = ( Y ~ ,. . .,yI1)in R", let x . y  = C;=,x,<y, and 1x1 = (x .x) ' / ?  For 1 5 k I n we 
write d, instead of d/dx, and define the Laplacian A = C;=, d,'. If R is a region 
in R" and u :R + R then we say that u is harmonic on R provided u is C 2  (twice 
continuously differentiable) on R and u satisfies the Laplace equation 

Au(x) = 0 for all x E R .  

For completeness we include a well known proof [9, p. 1031 of the weak form of 

The Maximum Principle. If R is a bounded region in R", u :fi + R, u is continuo~o 
on a,u is C 2  on 0 ,  and Au(x) 2 0 for all x E R ,  then u attains its maximum 
on dR.  

Proof: For 0 < E E R let u,(x) = u(x) + ~ 1 x 1 ~for x E a. Then u, is continuous 
on 2 ,  C 2  on R and, for all x E R ,  

Hence, for each x E R there is a k ( l  I k In) such that dlu,(x) > 0; single 
variable calculus ensures that u, does not have a relative maximum at x. It follows 
that, for each E > 0, U, attains its maximum on dR.  That is, for each E > 0 there 
exists x, E dR such that u,(x) I u,(x,) for all x E 2 .  Hence, for 6 > 0 and x E fi 
U(X)I u,(x) I u(x,) + E I X , ~ ,SO that u(x) I max{u(y): y E dR) + eR2, where 
R = max{xl : x E fi). Since this is so for every E > 0, U(X)I max{u(y): y E dR) 
for all x E 2 .  
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Corollary 1. If R is a bounded region in R", u : fi -,R, and u is continuous on a 
and harmonic on a. then u attains its maximum and its minimum on dR.  

For proof it suffices to note that since u is harmonic on R ,  so is -u .  

Corollary 2. If R is u bounded region in R" and f : d R  + 52 is continuous, then 
there is at most one solution to the Dirichlet problem satisbing u ( x )  = f ( x )  for all 
x E dR.  

Proof: Suppose that u ,  and u ,  were such solutions and let v ( x )  = u, (x )  - u, (x )  
for x E a. Then u is continuous on a, harmonic on R, and vanishes on dR.  
Hence, by Corollary 1, for every x E fi we have 

0 = min { ~ ( y ): y E dR} I U ( X )  I m a x { v ( y ):y E a l l )  = 0, 

i.e., 0 = U ( X )  = u I ( x )- u 2 ( x )for all x E a. a 

Let's fix n 2 2 in Z, let r,, . . ., r;, > 0, let 
n 

b ( x )  = 1 - x i / r i  for x = ( x , ,. . . , x,,) E R" 
k = l  

and let &Y denote the ellipsoid { x  E Rr" b ( x )  > 0) so that CE= { x  E R" : b ( x )  = 0). 
We aim to solve the Dirichlet problem for &Y by first showing that it can be 
handled in the case of polynomial boundary data with the aid of an elementary 
consequence of some work of E. Fischer. 

Let 9 denote the real algebra of all polynomial functions from R" into R. For 
0 Im E Z, PI7,denotes the finite dimensional linear subspace of 9 consisting of 
those members of 9 having degree at most m .  

The following elegant result surely deserves to be better known. It has its origins 
in the 1917 paper [7] of Ernst Fischer; see the discussion of (2.8) on page 459 of 
[lo]. Let's call it 

Fischer's Lemma. For f E9 define L( f )  = A(j%). Then L is a linear, degree-
preserving, bijection of 9 onto itself. 

Proof: Clearly L is a linear operator on 9. Suppose that L( f )  = 0 for some 
f € 9 .  Let u = fb so that Au(x )  = 0 for all x E R" and u ( x )  = 0 for all x E d z .  
By Corollary 2, u ( x )  = 0 for all x E so f ( x )  = 0 for all x E &Y since b ( x )  > 0 
for all x E 8.But f is a polynomial; hence f ( x )  = 0 for all x E R". We have 
shown that L is one-to-one. 

Now suppose that 0 I m E Z. If f EPn ,  then fb EPI,,+,and hence 
A( fb )  ~ 9 , , , .That is, L maps 9,, ,  into itself. Since PI,, is finite dimensional and L 
is linear and one-to-one, L maps Pn,onto itself. 

2. THE DIRICHLET PROBLEM FOR ELLIPSOIDS AND POLYNOMIAL 
BOUNDARY DATA. Fischer's Lemma and the Maximum Principle, yield a simple 
proof of 

Theorem 1. Suppose that f E Prnfor some m 2 0. Then there exists a unique u in 
9,,, S L L C ~that 

A u ( x )  = 0 forallx E 52" and u ( x )  = f ( x )  forallx E dz. (#) 
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Proof: If m I 1 the conclusion holds with u = f. Suppose that m 2 2 and the 
degree of f is at least 2. We look for a u of the form f + ub with u For 
any such u ,  u ( x )  = f ( x )  for allx E d 8  and Au = Af + A(ub). By Fischer's Lemma, 
there exists a unique g in 913,,,_,such that A(gb) = - A  f .  Thus, if we define 
u := f + gb, then u €PI,,and (#) holds. Uniqueness follows from Corollary 2. 

3. THE MEAN-VALUE PROPERTY AND THE WEIERSTRASS APPROXIMA-
TION THEOREM. Let B = { x  E R" : 1x1 I 11, S = dB = { x  E R" : 1x1 = 11, and 
B,.(a) = { x  E R" : Ix - a I r )  = {a + ry :y E B )  for a E R" and r > 0. Denote 
by a the normalized, n - 1 dimensional surface measure on S. The following 
result is a combination of [I,  Theorems 1.2 and 1.201, which depend mainly upon 
the Divergence Theorem for B, a fairly self-contained exposition of which can be 
found in [3]. 

The Mean-Value Property. Suppose that R is a region in R", u : R -,R, and u is 
continuous. Then u is harmonic on R if and only i f  

According to [6, p. 351, this theorem can be traced back to an 1840 paper 
of Gauss. 

Corollary. If R is a region in R", u ,  : R - R is harmonic for each k E N, and 
{u ,x=,  conuerges uniformly on R to u :R - R, then u is harmonic on R. 

Sketch of Proot Suppose B,.(a) c R.Then 

u i ( a )  = / u , (a  + rs) d v ( s )  for k E N and a ( a )  = lim a ,  ( a ) .  
S k + z  

Moreover, since each u ,  is continuous and the convergence is uniform on R,u is 
continuous on R and 

a,(a + rs) d a ( s )  = j u ( a  + rs) d v ( s )  
S 

Hence 

By the Mean Value Property, u is harmonic on R. 

It does not appear to be well known that, in [13], Weierstrass proved his famous 
approximation theorem not only in the case of a single real variable but also in 
higher dimensions. That "approximate identity" proof, in the one dimensional 
case, is the subject of Chapter 59 of the beautiful book of Korner [Ill .  The same 
proof extends to higher dimensions without serious difficulty, see [9, p. 209 and 
Problem 1 on p. 2131. Because of its geometric appeal, its intimate relationship 
with the heat equation, and the fact that it affords C"' approximation, Weierstrass's 
own proof, in the author's opinion, has not been bettered. 

The Weierstrass Approximation Theorem. Given a rectangle I in R", a continuous 
function f : I + R, and E > 0, there exists a p in 9 such that f ( x )  - p(x)l < E for 
all x E I. 

By a rectangle in R" we mean a product of n closed bounded intervals. 
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4. THE DIRICHLET PROBLEM FOR ELLIPSOIDS; A SOLUTION 

Theorem 2. Given a continuous function f :  d g  + R, there is a unique continuous 
functiotz u :g -,R szich that L{ is C b n  Z?, ALL(^) = 0 for allx E g,and u ( x )  = f ( x )  
for all x E aZ?. 

Proof: For x = ( x , ,. . .,x,,) E R" let v ( x )  = EIj=,xi /r:  and 

Then f is continuous on R" and therefore, by Weierstrass's Theorem, can be 
uniformly approximated on each rectangle by a polynomial. But f ( x )  = f ( x )  for 
all x E a&?. Hence there is a sequence { f , } i= ,in 9 that converges to f uniformly 
on ii8. 

According to Theorem 1, for each k E N there is a unique u ,  € 9such that 
Au,(x) = 0 for all x E R" and u,(x)  = f lc(x) for all x E dZ?. By the Maximum 
Principle, for j, k E N and x E g,  

1 ( x )  - u k ( x )I I max{f,(!;) - f k ( y )1 : y E d % }  + 0 as j, k + .x;. 

Thus {u,E=, converges uniformly on i?? to a continuous function u : i?? + R. 
By the Corollary to the Mean Value Property, u is harmonic on 8.Moreover, 

for x E d g ,  4 x 1  = lim,,,u,(x) = lim,,,flc(x) = f ( x ) .  

5. A FINITE DIMENSIONAL DIRICHLET PRINCIPLE. Inspired by Girding's 
discussion of the Dirichlet principle, [8, pp. 96-98], we present 

Anotlzer Proof of Theorem I .  Assume m 2 2 and f E yn,.For cC, E 911,and x E R" 
let V $ ( x )  = ( i i ,$ (x ) , . . ., d,,$(x)), the gradient of $ at x ,  and let 

D ( $ )  = / 1 V $ ( x ) 1' dx-the Dirichlet integml. 
8 

For $, ,y E 9171define B(cC,,X )  = j,V$(x) . V x ( x )dx.Notice that B is a symmetric 
bilinear form on PI3,,and B( $, cC,) = D ( $ )  2 0 for all cC, E 911,.Moreover, for 
$ E 9,,,,D ( $ )  = 0 if and only if $ is constant (i.e., $ E 9 , ) .  

Let V = {wb: w ~ 9 ~ , - , )and A = { f  + u : u E V). Note that V is a linear 
subspace of PI,,and every member of V vanishes on d z .  Hence, if we let 
(cC,, X )  = B(cC,,X )  for $, ,y E V, then ( .  ,. ) is an inner product for V and its 
associated norm satisfies uI" B(u,  u )  = D(u)  for u E V. 

Observe that A is an affine subspace of 911,and if u E A then u ( x )  = f ( x )  for 
all x E dZ?. 

We aim to prove that D has a unique minimizer on A ,  say u ,  and this u is a 
solution to our problem. For any u E V we have 

Now the map u -,B ( f ,u), for u E V, is a linear functional on the finite dimen-
sional vector space V. Hence there is a unique g in V such that B ( f ,  u )  = ( g ,u )  
for all u E V.For u E V we therefore have 

D ( f  + U )  = D ( f )  + 2 ( g ,  u )  + lull" D ( f )  + Iu + gIl2 - Ig12 
and this is clearly least exactly when u = -g. Let u = f - g E A and conclude that 
D(u)  I D ( $ )  for all $ E A .  . 
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Suppose that 0 # u E V. If t E 52 then u + tu E A so that D(u) ID(u + tu) = 

D(u) + 2tB(u, u) + t'lull', i.e., 0 5 2tB(z~,u) + t'llull"or all t E R. It follows 
that, for all u E V, 0 = B(u, U)= C;=, If dIt~~(x)dltu(x)dx. But recall that every 
member of V vanishes on d&?. Integration by parts therefore leads us to conclude 
that 0 = CC=,/,(d,"u(x))u(x)clx = 1, hu(x)u(.x) dx for all u E V.That is, 

0 = / Au(x )w(x )b (x )  dx for every w a9,,l-2. 
ir 

( - 1  
Now ALL€ 9  and the map (Q,X)  -,1, @(x)x(x)b(x)dx (@,x€ 9  ,) is 
clearly an inner product for Hence, ( * )  ensures that Au = 0. Since LL E A, 
u(x) = f(x)  for x E d 8  and uniqueness is guaranteed by Corollary 2 of the 
Maximum Principle. 

6. REMARKS 

(i) Theorem 1 was proved in yet another nonstandard way in [5, Thkotme 6, 
p. 601. 

(ii) Suppose that g € 9  and we are interested in solving the Dirichlet prob-
lem for Poisson's equation: Au(x) = g(x), x E Z?, and u(x) = f(x), x E d g  
where f : d 8  + R is a given continuous function. By Fischer's Lemma 
there exists a u in 9 such that g = A(ub). By Theorem 2, there exists a 
continuous w : @ + R such that w is C' on 27,Aw(x) = 0, for x E g ,  and 
W(X)= f(x)  for x E d 8 .  Let u(x) = w(x) + u(x)b(x) for x E c??. Then u 
is continuous on and C' on 8,Au(x) = Aw(x) + A(ub)(x) = g(x) for 
x E 8 ,  and u(x) = w(x) = f(x)  for x E d;P. 

(iii) Theorems 1 and 2 apply to arbitrary ellipsoids and not just the "canonical" 
types considered so far. To see this it suffices to note that every ellipsoid 
is isometric to one of the kind we've considered and to check that the class 
of harmonic function is invariant under isometries; [I ,  pp. 2-31. 

(iv) In place of the Laplacian one could substitute an operator of the form 
C; = ,A, d," with positive real A,. 

(v) Extensions of Fischer's ideas and applications thereof to differential 
problems have been given by several authors; see [lo], [12], and the 
references included therein. 

(vi) Additional intriguing properties of harmonic polynomials, together with 
applications thereof to boundary value problems for B, can be found in 
the charming paper of Axler and Ramey [21. 
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Said a mathematician named Haar, 

"Von Neumann can't see very far. 

He missed a great treasure: 

They call it Haar measure. 

Poor Johnny's just not up to par.'' 


Contributed by Paul R. Chernoff, UC Berkeley, who provides the 
following background: John von Neumann had proved the existence of 
invariant measures on compact topological groups, but tried to discourage 
Alfred Haar from working on the locally compact case on the grounds 
that it seemed unlikely to be true in that generality. Fortunately, Haar 
persisted. 
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