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Curves Whose Curvature Depends on 

Distance From the Origin 


David A. Singer 

1. INTRODUCTION. The fundamental existence and uniqueness theorem for 
curves in Euclidean space R h t a t e s  that a curve is uniquely determined up to rigid 
motion by its curvature and torsion, given as functions of its arc-length. Further- 
more, given continuous functions K(S) and ~ ( s ) ,  with ~ ( s )  positive and continu- 
ously differentiable, there is a differentiable curve (of class at least C" with 
curvature K and torsion T. 

In practice, such curves are often impossible to find explicitly, due to the 
difficulty in solving the Frenet Equations, the linear differential equations govern- 
ing the curve; but see [2] for an example where the equations can be solved. In 
general, a result of Lie and Darboux shows that solving these equations is 
equivalent to solving a certain complex Riccati equation; see [3, p. 361 for details. 
Happily, in the planar case the Frenet equations can always be integrated by 
quadratures. 

We consider a different sort of problem. Suppose the curvature of a proposed 
curve in the plane is given in terms of its position. Can the curve be determined, 
and if so, how? The general form of this problem requires one to solve a nonlinear 
differential equation: 

An interesting solved example of this problem occurs when the curvature is 
proportional to one of the coordinate functions, say ~ ( x ,y) = cy. This is a 
remarkable property of the Euler elasticae, curves that minimize /K(s)' ds among 
curves of fixed length with fixed first-order boundary conditions. These are the 
"natural splines," formed by taking a thin inextensible wire of uniform thickness 
and pinning and "welding" the two ends in fixed positions; see [41. 

Among the Euler elasticae there is a unique closed curve, which is in the 
shape of a figure-eight. The curvature of this curve is given by the elliptic 
function sn(u, p),  where u is proportional to the arc-length parameter and 
p = 0.9089086.. . , the elliptic modulus, satisfies the transcendental equation 
2E(p )  = K(p).  Here K and E are the complete elliptic integrals of the first and 
second kind. The curvature vanishes at the crossing point, and the x-axis bisects 
the figure, with one loop above and the other below the axis. 

2. A FIRST ATTEMPT. The curvature of a planar curve is most simply defined 
using a coordinate system that moves with the curve. Let T be the unit tangent 
vector to the curve X(s), and let N be the vector orthogonal to T such that the 

November 19991 CURVES WHOSE CURVATURE DEPENDS ON DISTANCE 835 



Figure 1. Some Euler elasticae. 

- 2 0 2 4 

Figure 2. The figure-eight Euler elastics. 

frame T, N is positively oriented. If s is the arc-length parameter, then dX/ds = T, 
and the Frenet equations are 

If we define the angle 0 by writing the Euclidean coordinates of T as 
(cos0, sine), then we can rewrite (2.1) as 

d0 & dy
-=.(.). = cos 0 ,  and -= sin0. 
ds ds 

Equations (2.2) show that once K has been determined, the curve can be found 
by three quadratures. They are also very useful in computing numerical and 
graphical solutions to the Frenet equations in the plane. 

The condition we seek to have the curve satisfy is IIXI 
= 4-


= K.A direct assault on 
A 
more straightforward(2.2) after substituting K is unpromising. 
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approach might be to write X(s) = ( ~ ( s ) c o s + ,  ~ ( s ) s i n + )  in polar coordinates. 
This leads to a pair of coupled second-order equations, namely 

which can be reduced by use of the first integral 

to a (somewhat unpleasant) second-order differential equation for K .  Once this is 
solved the curve can be determined by quadratures. 

A slightly more devious approach is to define functions a ( s )  and p(s)  by the 
formula 

X = a T + P N  (2.5) 

in order to parametrize the curve by coordinates that move with the curve. 
Differentiating (2.5) gives 

The condition I X  = K in these coordinates is 

a' + p 2  = K ~ ,  (2.7) 
so we may define an angle Q by a = ~ c o s * ,j? = sin$. The equations (2.6) now 
lead to a pair of first order equations: 

Unfortunately, it is again not clear how to solve the differential equations and 
determine K .  

3. MOTION UNDER GRAVITATIONAL FORCE. Although it is not always possi- 
ble to find explicit solutions to a system of second-order differential equations, this 
can be done by quadratures for completely integrable Hamiltonian systems. Thus, 
we now attempt to reformulate our problem as a Hamiltonian system with 
sufficient symmetry to be integrable. 

A fundamental example of such a system_arises from the problem of an orbiting 
object. Newton's equations of motion are F ( X )  = mX", where X is the position 
of the object. Suppo5e the object is moving through space under the influence 
of a central force F ( X )  = -f(r)X, where r = X is the distance from the 
origin and f ( r )  is some continuous function. The motion satisfies the second order 
differential equations 

and the motion satisfies Kepler's Second Law (conservation of angular momentum): 
X x X '  = C, a constant vector, as can easily be seen by differentiating. The motion 
lies in a plane, which we assume is the (x,y)-plane, and if we put the curve in 
polar coordinates X = (r  cos+, r sin +), then 

7 d 4  r-- = ( ( Xx X'(I = c ,
dt  

where c = ICI  is a constant.(the angular momentum). 
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Now define a function @ ( r )by 


dcD 


Then F(x )  = -VV ,  where V ( x ,  y, z )  = @ ( d m ) .The motion satisfies 
conservation of energy: 

where E,  is a constant (the total energy). 
Using (3.2) and (3.3), it is possible to solve the equations of motion by 

quadrature. In the special case where cD(r.1 = - l / r ,  the force satisfies the inverse 
square law and we have the Kepler problem. The solutions in that case are 
ellipses, parabolas, and hyperbolas. 

Now let us compute the curvature of solutions. Since the parametrization is no 
longer by arc length, we need the general formula for the curvature of a curve: 

1 )  X' x X" 1 1  
~ ( t )= 

I I  X' II" 
Plugging in (3.1)and (3.2), this equation becomes 

Now using (3.3) to compute the denominator, we arrive at the formula 

Note that the value of K depends only on r. Define p ( r )  = ( E ,  - cD(r))- f .  

Then (3.6) reduces to 

If ~ ( r )  is continuous, we can solve (3.7) for p.is any function such that r ~ ( r )  
Define @ ( r )= 1 / , ~ ( r ) ~ ,  to (3.1) with energy E,  = 0.- and consider solutions 
Note that a specific choice of p also specifies a value of the momentum c,. That 
is, a solution to (3.1) has curvature proportional to the given function provided it 
has energy 0; its curvature is equal to the given function if its angular momentum 
c = c,. This is part of the proof of our main result: 

Theorem 3.1. Let K ( Y )  be a function such that r ~ ( r )  is continuous. Then the problem 
o f  determining a curve whose curvature is ~ ( r ) ,  where r is the distanceflonz the origin, 
is solvable by quadmtures. 

4. T H E  CASE ~ ( r ) r. Using (2.2), it is difficult to produce pictures of = not 
curves whose curvature is equal to the distance from the origin. Some of them are 
illustrated in Figure 3. We want to find analytic representations for these curves. 

Theorem 3.1 is slightly deceptive. The fact that the differential equation is 
integrable by quadratures does not mean that it is easy to perform the integrations, 
as we now illustrate with the case that inspired this paper: ~ ( r )  r. The first step, = 
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Figure 3. Curves with curvature equal to radial distance. 

solving (3.7) is easy and gives 

where a is a constant of integration. This corresponds to a force law in which the 
magnitude is proportional to r2/(r3 + a)3. 

Applying (3.3) and assuming that r2q5' = c,, we obtain 

This has among its solutions the circular orbit X ( t )  = (r, cos(at), ro sin(at)), 
where a = 3c,,/rO(ri + a) and r i a  = c,. This implies 3r0 = r i  + a .  However, X is 
a solution to (3.1) only when a 2= 27c;r,/(ri + a)3. This implies r, = 1, which of 
course we knew! Other solutions can have r' = 0 only at isolated points. 

We can eliminate t and find #I = +(r) from 

This is not always an elementary integral. One special case, however, is very 
pleasant, namely the case where a = 0. Then the integral becomes elementary, 
and the resulting curve is given by 

This curve is none other than (one leaf of) the Bernoulli lemniscate shown in 
Figure 4. 
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Figure 4. The Bernoulli lemniscate. 

From this example it becomes clear why the previous, more straightforward, 
attempts led to such complicated equations. The solution to the original equations 
would have given the lemniscate parametrized by arc length. However, the arc 
length function for the lemniscate is an elliptic integral. Thus even this special case 
would be much more complicated to find. In fact, we have not yet solved (3.1) 
explicitly, even in the special case; we found instead a non-parametric representa- 
tion of the trajectory. This is not difficult to do, however, as we observe in the 
next section. 

5. SUB-AFFINE ARC LENGTH. Solutions to equations of motion for particles 
moving under the influence of a central force have a natural parametrization. 
From the equation X" = g(x, y )X  we have observed that IIX X X'II is constant. 
Now let X(t) be a curve satisfying X X X'  # 3. Then there is a re-parametriza- 
tion of the curve such that with respect to the new parameter a = a ( t )  the 
curve satisfies 

This parameter is computed by 

a ( t )  = / 'I~x (5.2)X X ' I  dt. 
0 

In the case of the lemniscate r 2  = 3 cos(28), evaluation of (5.2) is an elementary 
calculation and yields a = $ sin(28). 

The parameter a may be called the sub-afJine arc length parameter. The 
motivation for this name is the following: If Y(t) is a curve in the plane such that 
the vectors Yt(t) and Y"(t) are linearly independent, then we may re-parametrize 
the curve by a parameter a such that with respect to this new parametrization 
IIY' x Yt'll = 1. This parametrization is known as the afJine arc length; see [I, 
p. 1491. It plays a role in affine geometry exactly analogous to the usual arc length 
parameter in Euclidean geometry. If a curve is parametrized by affine arc-length, 
then Y"' + pYt = 0, where p ( a )  is the afine curvature of the curve Y ; it is a 
geometric invariant of the curve under unimodular affine transformations of 
the plane. 

If Y is a curve parametrized by affine arc length, then its derivative X ( a )  = 

dY/da is parametrized by subaffine arc length. We call p ( a )  = -d2x/d$ the 
subafine curvature of X. This is a geometric invariant of X under unimodular 
linear transformations of R ~ .  
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Our problem was to find curves whose curvature is equal to the distance from 
the origin. Let y be such a curve. If y(t) x yl(t)# 0, then we can locally 
parametrize y by subaffine arc length. Then 

The Euclidean curvature is given by the formula K (  y(a))  = p(a)/ll y'(a)l13. 
If we now assume that the radial distance from the origin varies monotonically 

on some interval a, I a a,,  we can solve for a in terms of r and define 
f(r) = p(a(r)). Thus, on any part of a curve along which X x X' does not vanish 
and X .X '  does not vanish, the curve arises as a solution to an equation of the 
form (3.1). 

Local extrema of r do not present any difficulty, since it is evident that the 
curve has a symmetry at each such point. Places where X x X' = 0, however, 
represent limits of trajectories. For example, in the example of the lemniscate the 
origin is a singularity of the orbit. Note, however, that these are of necessity 
isolated points on the curve. This observation completes the proof of the theorem. 

It is interesting to note that the graphical solution corresponding to the 
lemniscate actually produces two lemniscates at right angles to each other. Indeed, 
the solution to (2.2) with initial conditions x = 0, y = 0, 8 arbitrary, sweeps out 
alternate halves of the two lemniscates, producing a flower with four loops. Note 
that the equation we have solved is for the signed curvature equaling the radial 
distance. Thus K is required to remain non-negative. The curvature of the 
lemniscate changes sign as it passes through the origin. 
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