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NOTES 
Edited by Jimmie D. Lawson and William Adkins 

On the Nelson Unit Distance 

Coloring Problem 


Carsten Thomassen 

In 1950 Nelson raised the problem of coloring the Euclidean plane in such a way 
that no two points of distance 1 receive the same color. How many colors are 
needed? This problem was often mentioned in Paul Erdos' famous lectures on 
unsolved combinatorial problems. The history of the problem is described in [2] 
and [3]. Clearly, three colors are needed. To see that four colors are needed, we 
consider seven points x,, x,, . . . ,x, in the Euclidean plane such that the following 
pairs are of distance 1:x,x,,x,x,,x,x,,x,x,,x,x,,x,x,,~~~~,~~~,,~~~,,~~~,, 
x,x,. It follows from the theorem of de Bruijn and Erdos [I] that the number of 
colors needed for the whole plane is the maximum number of colors needed for 
the finite subsets. The half-century old upper bound 7 is obtained by drawing an 
appropriate graph in the plane such that each face (region) is bounded by a cycle 
of (Euclidean) diameter less than one and then coloring each face and part of the 
boundary by the same color in such a way that only faces of distance > 1receive 
the same color. We prove that colorings of this type always need at least 7 colors. 
More generally, 7 colors are needed for any surface and any metric of large 
diameter provided there are no short noncontractible curves and no short con- 
tractible curves whose interior have large area. 

The upper bound 7 is obtained from a hexagonal tiling of the plane such that 
the hexagons are regular and of diameter slightly less than 1. All points inside a 
hexagon are colored with the same color. Two hexagons are colored differently if 
the distance between them is less than one. A coloring of this type will be called 
nice. More generally, we consider any metric space S, d such that S is a surface, 
i.e., S is an arcwise connected Hausdorff space such that each element of S has a 
neighborhood homeomorphic to an open disc in the Euclidean plane. We let G be 
a connected graph on S, i.e., the vertices of G are elements of S, and the edges of 
G are simple arcs on S that are painvise disjoint except at a common vertex. 
Moreover, we assume that each face (i.e., arcwise connected component of S \ G )  
has diameter less than 1, is homeomorphic to a disc, and is bounded by a cycle in 
G. Now a nice coloring of S obtained from G is a coloring such that each color 
class is the union of faces (and part of their boundaries) such that the distance 
between any two of these faces is greater than 1. We define the area of subset A 
of S as the maximum number of painvise disjoint open discs of radius that are 
contained in A. (If this maximum does not exist we say that A has infinite area.) 
We say that a simple closed curve C is contractible if S \ C  has precisely two 
arcwise connected components such that one of them is homeomorphic to an open 
disc in the Euclidean plane. That component is called the interior of C and is 
denoted int(C). (If S is a sphere, then int(C) denotes any component of S \ C  of 

850 NOTES [Monthly 106 



smallest area). We prove that every nice coloring of S needs at least 7 colors 
provided there exists a natural number k such that (i), (ii), (iii) below hold. 

(i) Every noncontractible simple closed curve has diameter at least 2. 
(ii) If 	 C is a simple closed curve of diameter less than 2, then the area of 

int(C) is at most k. 
(iii) The diameter of S is at least 12k + 30. 

If any of these conditions (i), (ii), (iii) is dropped, then the number of colors 
needed may decrease. Thus a thin two-way infinite cylinder has a nice 6-coloring, 
which shows that (i) cannot be omitted. Similarly, a thin one-way infinite cylinder 
(with a small disc pasted on the boundary of the cylinder to form the bottom) 
shows that (ii) cannot be omitted. Finally, (iii) cannot be omitted since any sphere 
of diameter less than 1has a nice coloring in two colors. 

D. R. Woodall [5] (see also [4} for a correction) has obtained a 6-color theorem 
related to the 7-color theorem in our Theorem 1. 

2. A lemma on degrees in graphs. A graph G is a set V(G) of elements called 
vertices and a set E(G) of unordered pairs xy of vertices called edges. If the edge 
xy is present we say that xy joins x and y and that x and y are neighbors. The 
number of neighbors of x is the degree of x. A path from x to y is a graph 
consisting of distinct vertices x,, x,, . . . ,x,, and the edges x,x2,  x,x,, . . . , x , ,,x,, 
where x ,  = x, x, = y. If we add the edge x,,x, we obtain a cycle. If x is a vertex, 
then D,(x) is the set of neighbors of x. More generally, if n 2 2, then D,(x) is the 
set of vertices in V(G)\[{x} u D,(x) U ... U Dl,-,(x)] having a neighbor in 
D,-,(x). The subgraph of G induced by {x} U D,(x) U D,(x) U ... is the con-
nected component of G containing x. The graph G is connected if G has only one 
connected component. G is locallyfinite if D,(x) is finite for each vertex x in G. 
G is locally corznected if for each vertex x, the subgraph of G induced by D,(x) is 
connected. G is locally Hamiltorzian if, for each x in V(G), G has a cycle with 
vertex set D,(x). The graph of the icosahedron is locally Hamiltonian and has 12 
vertices all of degree 5.  No larger connected graph has these properties. 

Lemma 1. If G is a connected, locally finite, and locally Hamiltoniarz graph with at 
least 13 vertices, then G has a vertex of degree at least 6. 

Proof: If no vertex has degree at least 6 we pick a vertex x of maximum degree. 
Clearly x has degree at least 3. If x has degree 3, then the subgraph of G induced 
by {x} u D,(x)  is the graph of the tetrahedron, because G has a cycle with vertex 
set D,(x). Since G has maximum degree 3, there is no vertex in D2(x). Since G is 
connected, G is the graph of the tetrahedron, contrary to the assumption that G 
has at least 13 vertices. If x has degree 4, then we consider a cycle in D,(x)  and 
conclude that each vertex y in D,(x) has at most one neighbor z in D2(x). Since 
G has a cycle with vertex set D,(y), z has at least three neighbors in Dl(x). So, 
there are at most 4 edges from D,(x) to D2(x), and every vertex in D,(x) has at 
least three neighbors in D,(x). Hence D2(x) has at most one vertex z. Since G has 
a cycle with vertex set D,(z), it follows that D,(x) = 0. So, G has at most 6 
vertices, a contradiction. We may therefore assume that x has degree 5.  

Each vertex y in DI(x)  has at most two neighbors in D,(x), because a cycle 
with vertex set Dl(y) shows that y has at least two neighbors in Dl(x), Since G 
has a cycle with vertex set D,(y), every neighbor z of y in D,(x) has at least two 
neighbors in D,(x). Now z cannot have two or more neighbors in D,(x) because 
then a cycle with vertex set Dl(z)  shows that z has at least two neighbors in 
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D,(x), that is, z has a total of at least 6 neighbors, a contradiction. So z has at 
most one neighbor in D,(x) and that neighbor has at least three neighbors 
in D,(x). Since there are at most 10 edges from D,(x) to D,(x), and every vertex 
in D,(x) has at least two neighbors in D,(x), it follows that D,(x) has at most 5 
vertices. Hence there are at most 5 edges from D,(x) to D,(x). Since each vertex 
in D,(x) has at least three neighbors in D,(x), it follows that D,(x) has at most 
one vertex, and D,(x) = 0.Hence G has at most 12 vertices, a contradiction that 
completes the proof. 

3. A 7-color theorem 

Theorem 1. Let G be a connected graplz on a suface S satisfiirzg (i), (ii), and (iii). 
Then every nice coloring needs at least 7 colors. 

Proof: Suppose (reductio ad absurdum) that there exists a coloring using at most 6 
colors. We define the map graph M = M(G, S)  as the graph whose vertices are the 
faces of G such that two vertices in M are neighbors if and only if the correspond-
ing facial cycles in G intersect. Consider any vertex x of M and let C ,  be the 
corresponding facial cycle in G. We choose an orientation of C, and let 
x, ,  x,, . . . ,x,, x, be the vertices in Dl(x)  listed in the order that they are 
encountered when we traverse C,\. We now explain the idea behind the proof. 
We consider first the particularly nice case where, for each vertex x, all vertices 
x, ,  x,, . . .,x, are distinct. In that case, M is locally Hamiltonian. Since the surface 
S is arcwise connected, it follows that M is connected. Since S has diameter 
greater than 13, M has more than 12 vertices, and hence, by Lemma 1, M has a 
vertex of degree at least 6.  Now x and its neighbors must have distinct colors 
because x corresponds to a face of diameter < 1 on S .  This contradiction 
completes the proof in the particularly nice case where M is locally Hamiltonian. 

However, a vertex may appear several times in the sequence x , ,  x,, . . . ,x, 
above, and some more careful analysis is needed. We omit those appearances 
(except possibly one) of x, for which C, and C, have only a vertex in common. In 
other words, if xi appears more than ofice in the new sequence, then we list only 
those appearances such that C,, and C, share an edge. Then any two consecutive 
vertices in the sequence x,, x,, . . .,x,<,x, are neighbors in M and so M is locally 
connected. It follows that M - x (that is, M with x and the edges incident with x 
removed) is connected. Moreover, if y is any other vertex of M, then M - x - y is 
connected unless y appears twice in the sequence x,, x,, . . . ,x,, that is, C, and C, 
have at least two edges in common. 

Consider now two vertices x and y such that C ,  and C, have at least two edges 
e and f in common (that is, y = x, = x, for 1 I i < j - ' I  < k - 1). Let R be a 
simple closed curve in the faces bounded by C ,  and C,. such that R crosses each of 
e and f precisely once and has no other point in common with G.  By (i), R is 
contractible. Hence M - x - y is disconnected. We say that{x, y} is a %-separator 
in M. For each vertex z in M such that C, is in irzt(R) and has color 1, we pick a 
point P, in irzt(C,), By (ii), there are at most k points P, and hence there are 
altogether at most 6 k  vertices z such that int(C,) c int(R). We define irzt(M, x, y) 
as the subgraph of M - x - y induced by all those vertices z in M such that C, is 
in int(R) for some R. Then each connected component of irzt(M, x, y) has at most 
6 k  vertices. Since S has diameter at least 12k + 3 it follows that G has two 
vertices whose graph distance is at least 12k + 2. Hence M - x - y has some 
component that is not in irzt(M, x, y). We claim that M - x - y has precisely one 
such component, which we call ext(M, x, y). To see this, let el ,  e,, . . ., e,, be the 
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edges in C, n C ,  occuring in that cyclic order on C,. Then e,, . . . , e,,, divide 
D,(x)\{y) into m classes A,, A,, . . . ,A ,,,. By letting {e ,f )  = {e,, e i+,)( l  I i m) 
in the preceding argument, we conclude that for each i = 1,2 , . . . ,m, either 
A, c irzt(M, x, y) or A, n int(M, x, y )  = 0,Since the former cannot hold for each 
i E {1,2,.. . , m}, the latter must hold for some i, and hence the former holds for 
all other i in {1,2,.  . . , m}. Summarizing, for any two vertices x, y in M, M - x - y 
has precisely one connected component extlM, x, y) with more than 6k vertices. 

If {u, U) is a 2-separator in M such that either x or y or both is in int(M, u, u), 
then clearly int(M, x, y) c int(M, u, u). (To see this, we use the properties of M 
established previously and forget about S. )  If no such 2-separator {u, u} exists, then 
we say that {x, y} is a maximal 2-separator and that xy is a crucial edge. Since each 
connected component of int(M, x, y) has at most 6k vertices, then a maximal 
2-separator exists (provided a 2-separator exists). Let H be the subgraph of M 
obtained by deleting int(M, x, y) for each maximal 2-separator {x, y). Then H + 0. 
Moreover, H is connected since a shortest path in M between two vertices in H 
never uses vertices in int(M, x, y). Similarly, H is locally connected. We claim that 
H is locally Hamiltonian. Consider again a vertex x in H and the sequence 
x,, x,, . . . , x,<, x, in D,(x) (taken in M). If this sequence forms a Hamiltonian 
cycle in Dl (x)  in H ,  we have finished. By the definition of H,  k 2 3. So assume 
that xi = xj where 1 Ii < j - 1 < k - 1. Then {x, xi) is a 2-separator and 
the notation can be chosen such that int(M, x, xi} contains all the vertices 
xi+ l ,  . . . ,xj7,.  We repeat this argument for each pair i, j such that xi = xj 
where 1 I i < j - 1 < k - 1. Then the vertices in x,, x,, . . . ,x,, x ,  that remain 
after we delete all vertices in the interiors of the 2-separators form a cyclic 
sequence with no repetitions. As H is connected and locally connected and has at 
least three vertices (by (iii)), the preceding reduced cyclic sequence has at least two 
distinct vertices. It cannot have precisely two vertices u ,  u because then H - u - u 
is disconnected, and hence M - u - u is disconnected (because M is obtained 
from H by "pasting graphs on edges of H"). Since one of the edges xu or xu is 
crucial (because D,(x) is smaller in H than in M), the maximality property of the 
2-separator {x, u} or {x, u} implies that ext(M, u, u) is the connected component of 
M - u - u containing x. For each vertex z in that component, M has a path of 
length at most 6k from z to either x, u, or u. Hence M has diameter at most 
12k + 1, a contradiction that proves that H is locally Hamiltonian. 

If H has a vertex x of degree at least 6 we have finished because x and its 
neighbors must have different colors in the nice coloring. So, we may assume that 
each vertex of H has degree at most 5. By Lemma 1, H has at most 12 vertices. 
Hence H has at most 30 edges. Since M is obtained from H by "pasting" 
int(M, x, y} on the crucial edge xy for each crucial edge of H, we conclude that 
the diameter of M is at most 12k + 29, a contradiction to (iii). 
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