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Descartes' Rule of Signs: 

Another Construction 


David J. Grabiner 

Descartes' Rule of Signs is a simple, classical bound on the number of positive 
roots of a polynomial, and analogously on the number of negative roots. In 
Descartes' own words, the rule is stated as follows: [3] 

An equation can have as many true [positive] roots as it has changes of sign, 
from + to - or from - to +. 

This statement is written in terms of sign changes of the coefficients, but the 
wording is very similar to the Intermediate Value Theorem, which says that a 
continuous function must have at least one root in an interval if it changes sign in 
that interval. This suggests a natural construction of the polynomial which achieves 
the bound by creating a correspondence between sign changes of its coefficients 
and sign changes of its value at designated points. 

Other constructions that achieve the maximum number of roots are known [2]. 
In this MONTHLY,Anderson, Jackson, and Sitharam [I] give a different natural 
construction, which works as long as all signs are nonzero. They construct a 
polynomial by choosing the roots according to the desired signs; they then show 
that the coefficients of the polynomial have the correct signs. They also show that 
this polynomial can be modified to obtain a polynomial with the same sign 
sequence and any number of positive roots that is a positive even integer less than 
the maximum. 

For our construction, we need only a single polynomial without signs attached 
to the coefficients; however we specify the signs, the value of the polynomial has 
the correct signs at the proper places. 

Theorem 1. Let a,, . . . ,a, be any sequence of - 1, 0 ,  and + 1. Then for any 
k > n ,  the polynomial 

has the maximum number of positive and negative roots allowed by Descartes' Rule 
of Signs. 

Proof If oj i0, then at x = k", the absolute value of the term of x J  is k2'j-j2. 
Thus, at x = k2', the absolute value of th: term of x2J is k J  and the absolute 
values of the other terms are all at most kj  ' .  Since there are only n such terms 
and k > n,  the term of x2' is larger in absolute value than all the others combined, 
and thus the sign of p ( k 2 J )is the same as a;.. Thus, if a, and oj are two 
consecutive opposite signs, the polynomial must have a root between x = k2 '  and 
x = k2'. 

Analogously, for negative roots, the term of x21 is larger in absolute value than 
all the other terms at x = - k 2 J ,  and thus if ( - 11% and ( - l)'a, are two 
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consecutive opposite signs in p(-x) ,  the polynomial must have a root between 
x = -k2j and x = -k". rn 

Since this theorem is valid for polynomials with zero coefficients, it is also easy 
to construct a polynomial with fewer roots than the maximum by making some of 
the coefficients very small and using the remaining signed coefficients to force the 
roots. In particular, we can make the number of positive roots short of the 
maximum by any even number. 

Theorem 2. Let a,, . . . , a,, be any sequence of - 1, 0,  and +1; we may assume 
a, i0 and a,, i0 since the nonzero roots are not affected by eliminating zeros at the 
ends of the sequence. Let r,, . . . , r,, be obtained by changing some of the internal a, 
to zero, but keeping 7 ,  and T,, nonzero. Then there is a polynomial p ( x )  with sign 
sequence a that has as marly positive roots as there are sign changes in the 7 sequence 
and as many negative roots as there are sign changes in the ( - l)'r, sequence. 

Corollary. If the a sequence has at least 2r sign changes, we can take the T sequence 
by changing to zeros those signs that are opposite to a, and precede the 2r-th sign 
change. This gives a polynomial with 2r fewer positive roots than the number of sign 
changes irz the a sequence. 

Proof: Let q ( x )  be the polynomial for the 7 sequence; let its roots be x , ,  . . .,x,,,. 
The polynomial q ( x )  has zero coefficients where certain signed coefficients are 
needed. We replace these zeros in q ( x )  by sufficiently small terms a,Sx' in p ( x )  
without affecting the number or signs of roots. 

Since q ( x )  is known to have its roots all in distinct intervals, it cannot have 
any double roots. Thus there is some el such that no root of q i ( x ) is within E ,  

of a root of q(x ) ;  we also require < Ix,I for all i ,  which we can require 
since q(0) = T ,  i0. Since Iq l ( x )  is continuous, it is bounded on each interval 
[ x ,  - e l ,  x ,  + e l ] ; let e2 be its minimum value on the union of all of these 
intervals. Finally, let E ,  be the minimum of e1e2and the value of I q ( x )  on the 
intervals [-k"" x ,  - e l ] ,[ x , - ~+ e l ,  x ,  - e l ] ,and [x,,,+ E , ,  k2"] .  

Then if we add to q ( x )  any differentiable function f ( x )  that has f (x ) l  < e, 
and f l ( x ) l  < e2 on [ - k 2 " ,  k2'I], then f ( x )  + q ( x )  must still have one simple root 
in each interval [ x ,  - e l , X ,  + e l ] ,since it changes sign in each such interval and its 
derivative does not change sign there. Also, f ( x )  + q ( x )  cannot have any other 
root in [ - k2" ,  k2" ] ,  since f (x ) l  < E ,  < I q ( x )  outside these intervals. Thus f ( x )
+ q ( x )  has the same number of roots as q ( x )  in [ - k2"$  k 2 " ] ,  with the same signs. 

By the construction of q ( x )  with leading term +k-" x" and other terms whose 
absolute values are all at most k-" ' - 'xH for x > k2" ,  we have I q ( x )  2 
k - ( k 2 ) for a11 x 2 k2" .  Thus if f ( x ) l  < ( k  - n)(k-" ' - ' )x"  
for all x 2 k2",  then f ( x )  + q ( x )  has no roots with absolute value greater than 
k2",  and thus has the same number of positive and negative roots as q. 

We can thus let p ( x )  = f ( x )  + q(x ) ,where 
1 1 - 1  

f ( x )  = C (a,  - 7 ] ) s x J ,  
] = I  

with S sufficiently small to meet the conditions on f .  This polynomial has the 
correct signs and the correct number of positive and negative roots. rn 

Note that this technique does not allow us to obtain simultaneously all possible 
numbers of positive and negative roots. In fact, this turns out to be impossible; 
some combinations of positive and negative roots cannot be obtained at all. The 
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simplest impossible case is the sequence +, 0, -, 0, +, corresponding to the 
polynomial ax4 - bx2 + c = 0, which has -x  as a root if it has x as a root and 
thus cannot simultaneously have no positive and two negative roots. 

Even if no signs are zero, it may not be possible to obtain simultaneously all 
admissible numbers of positive and negative roots. For example, the sequence 
+, -, -, -, + has two positive and two negative sign changes. It is possible for a 
polynomial with this sign sequence to have two,'negative or zero positive real roots, 
but not both simultaneously. A fourth-degree polynomial with only two negative 
real roots for which the sum of the roots was positive could be factored as 
a ( x 2  + bx + c ) ( x 2- sx + t )  with a,  b ,  c ,  s, t > 0, s2 < 4 t ,  and b 2  2 4c.  The prod- 
uct of these factors is a ( x 4  + ( b  - s ) ~ "  ( t  + c - bs )x2  + (b t  - cs)x  + st). To 
get the correct sign sequence, we need b < s and bt < cs, which gives b2t  < s2c 
and thus b2/c  < s2/t .  But we have D2/c 2 4 > s2/ t .  

This counterexample provides a negative answer to the question raised in [I] 
whether it is possible to get a polynomial with an arbitrary sign sequence and any 
simultaneous numbers of positive and negative roots allowed by Descartes' Rule of 
Signs. This suggests a new conjecture: the only possible numbers of positive and 
negative roots are the maximum values permitted by Descartes' Rule of Signs 
in a sequence obtained by changing some of the internal signs to zeros as in 
Theorem 2. The above cases and the analogous +, +, -, +, + confirm the 
conjecture for degree 4. 
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Integrating Polynomials in Secant 
and Tangent 

Jonathan P. McCammond 

This note provides a relatively painless way to integrate arbitrary polynomials in 
secant and tangent without invoking integration by parts or anything beyond 
elementary polynomial and trigonometric identities. The techniques involved also 
introduce some of the ideas behind the construction of Laurent polynomials, 
although the manner in which they do so is rather indirect. We begin with a 
theorem that covers almost all possibilities. 

Theorem 1. For each polynomial P ( s ,  t )  in two variables, there are polynomials F 
and G in one variable and a constant c such that 

j ~ ( s e cx ,  tan x)sec x d x  = F ( u )  - G(u)  + c ln(u) + C 

where u = secx + tan x and u .= secx - tan x.  
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