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1 Introduction

We give a classification of symbols of partial differential systems that consist
of two equations imposed on two functions in two independent variables, with
respect to the natural action of the group of linear changes of dependent and
independent variables.

The classification turns out to be finite, consisting of 5 types in the real
case and of 4 types in the complex case. Apart from the elliptic, parabolic
and hyperbolic types [1] constituting the well-known classification of second
order equations for a function u(x, y), in the present case we also have two
non-equivalent ‘degenerate’ types.

Bifurcation diagrams for the singular orbits in the space of symbols imply
certain properties of the singularities of linear and quasilinear systems of
the considered type. I am indebted to S. V. Chmutov who explained me
the meaning of versal deformations and bifurcation diagrams in the general
context of an arbitrary Lie group action on a manifold.

In the last section of the paper we find, for every type of the symbol,
the topological type of the corresponding integral Grassmanian — an ob-
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ject important in the study of singularities of solutions of partial differential
equations [5].

All theorems stated in this text are quite straightforward, so we confine
ourselves just to short comments, omitting the complete proofs.

2 Classification of Symbols

A system of k-th order partial differential equations imposed on m func-
tions of n independent variables determines a submanifold E in the jet space
Jk(X,Y ) where dim X = n, dim Y = m. The symbol of the system at a
point θ ∈ E is defined as the intersection of the tangent space to E and the
tangent space to the fiber Fθ of the natural projection Jk → Jk−1 containing
θ. If a ∈ X and b ∈ Y are the source and the target of the jet θ, respectively,
then the tangent space Tθ(Fθ) is naturally isomorphic to SkV ∗ ⊗W where
V = Ta(X), W = Tb(Y ) and Sk denotes the k-th symmetric power (see [2]).
In this sense, a symbol can be thought of as a linear subspace of the space
Sk(Rn)∗ ⊗Rm.

Denote by Gθ be the group of those local diffeomorphisms of the pair
(X × Y, (a, b)) which, after being lifted to the jet space Jk(X, Y ), do not
move the point θ.

Theorem 1 Let θ, θ′ ∈ π−1
k,0(a, b) be two points lying in the same fiber of the

natural projection πk,0 : Jk(X, Y ) → J0(X,Y ) = X × Y . Then:

1. There exists a local diffeomorphism φ in a neighbourhood of (a, b) such
that φ(k)(θ) = θ′.

2. The groups Gθ and Gθ′ are conjugate via φ.

3. The action of Gθ in Tθ(Fθ) agrees with the action of Gθ′ in Tθ′(Fθ′)
under the identification Tθ(Fθ) ∼= Tθ′(Fθ′) ∼= SkV ∗ ⊗W .

4. In the case X = Rn, Y = Rm and θ = (0, 0, . . . , 0) in the standard
jet coordinates the group Gθ consists of those local diffeomorphisms
(x, y) 7→ (x̃, ỹ) which satisfy ∂ỹ

∂x
|(0,0) = 0.

5. The action of this group in Tθ(Fθ) depends only on the linear part
of the diffeomorphism and decomposes as G → GL(V ) × GL(W ) →
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GL(Tθ(Fθ)), where the last arrow is nothing but the natural left-right
action of the direct product GL(Rn)×GL(Rm) in Sk(Rn)∗ ⊗Rm.

Thus, in a purely algebraic setting, the problem of symbol classification can
be stated as follows. Fix a quadruple of natural numbers n, m, k, r, and
let V and W be linear spaces of dimensions n and m over a certain field.
Describe the orbits of the group GL(V ) × GL(W ) in the Grassmanian of r-
dimensional planes in SkV ∗ ⊗W with respect to the action that comes from
the natural left-right action of this group in the underlying space SkV ∗ ⊗W .
The problem makes sense over an arbitrary field; we will be only concerned
with the reals and the complexes.

In the special case m = 1, k = 2, r = 1 (corresponding to one second
order equation) we obtain the problem of classification of (real or complex)
quadratic forms in n variables. Its well-known solution gives rise to the usual
notion of type (hyperbolic, parabolic, elliptic) for the second order equations.

In this note we will solve, and derive the consequences of, the symbol
classification problem in the case n = 2, m = 2, k = 1, r = 2, which, simple
as it is, has never been studied in the literature, to the best of our knowledge.
The algebraic problem to study is that of classifying two-dimensional linear
spaces of linear operators in the plane with respect to the independent linear
changes both in the source and in the target.

A complete list of all quadruples (n,m, k, r) for which the classification
of symbols is finite, will be given in a separate paper [4].

3 Planes of linear operators in the plane

The direct product GL(R2)×GL(R2) acts in End(R2) according to the rule

(X,Y ) · A = XAY.

We are to find the orbits of the induced action on the set of 2-planes in
End(R2).

In the four-dimensional space End(R2) we single out a three-dimensional
cone K that consists of all degenerate operators. The trace left by this cone
on a two-plane L in End(R2) and considered up to linear transformations
of the plane, is an important invariant of L which is sufficient to distinguish
all the orbits but two. The latter are made up of planes that are entirely
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contained in K and differ in that, for one of them, all the operators of the
plane possess a common 1-dimensional kernel, while for the other, they have
one and the same 1-dimensional image.

Theorem 2 Two-dimensional planes of linear operators in R2 under the
linear changes of variables in the source and in the target split into five orbits.
Therefore, the symbol of any system of partial differential equations with
n = m = r = 2 belongs to one of the five possible types.

The orbits are listed in this table:

Type dim(O) L ∩K Normal form of L System of d.e.

Hyperb. 4 two lines 〈
(

1 0
0 0

)
,
(

0 0
0 1

)
〉

{
uy = 0
vx = 0

Ellipt. 4 one point 〈
(

1 0
0 1

)
,
(

0 1
−1 0

)
〉

{
vx = −uy

vy = ux

Parab. 3 one line 〈
(

1 0
0 1

)
,
(

0 1
0 0

)
〉

{
vx = 0
vy = ux

Deg. I 1 all plane 〈
(

1 0
0 0

)
,
(

0 0
1 0

)
〉

{
uy = 0
vy = 0

Deg. II 1 all plane 〈
(

1 0
0 0

)
,
(

0 1
0 0

)
〉

{
vx = 0
vy = 0

These five orbits can be conveniently vizualized in terms of elementary
projective geometry. The Grassmanian of two-planes in the four-dimensional
space End(R2) is isomorphic to the variety of projective lines in the three-
dimensional projective space P (EndR2)) ∼= RP 3. The cone of degenerate
operators shows up as a non-degenerate quadric Q ⊂ RP 3. The action of
the group of left and right linear changes carries over into the action of the
group of projective transformations of RP 3 that preserve the quadric Q. A
line l belongs to the ellptic, parabolic or hyperbolic orbit if it intersects Q in
0, 1 or 2 points, respectively. The two families of straightline generators of
the quadric correspond to the two degenerate types.

4 Versal Deformations

Let G be a Lie group smoothly acting on a manifold M . A versal deformation
[3] of a point p ∈ M is a local mapping f : (Λ, 0) → (M, p) of a certain
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parameter space Λ ∼= Rs whose image is transverse to the orbit G(p) and
has dimension equal to the codimension of G(p).

The partition of the space of parameters Λ into subsets corresponding to
different orbits is called bifurcation diagram.

If the orbit of the point p has dimension equal to the dimension of M ,
then its bifurcation diagram is trivial and it has no versal deformations with
s > 0. The type of such point p is said to be stable.

Theorem 3 The versal deformations of the normal forms listed in Theorem
2 can be chosen in the following way:

1. The hyperbolic type is stable.

2. The elliptic type is stable.

3. For the parabolic type {vx = λuy, vy = ux}.
4. For the first degenerate type {uy = λ1vx, vy = λ2ux + λ3vx}.
5. For the second degenerate type {vx = λ1uy, vy = λ2ux + λ3uy}.

The bifurcation diagram for a parabolic point is one-dimensional and
consists of an elliptic region on one side of the point considered and of a
hyperbolic region on the other side.

Bifurcation diagrams for both degenerate types are similar; they can be
represented as a neighbourhood of zero in a three-space split by the cone
λ2

3 + 4λ1λ2 = 0 into an elliptic region (inside the cone) and a hyperbolic
region (outside the cone); the points of the cone itself belong to the parabolic
type.

Thus, the diagram of orbit adjacency looks like this:

Degenerate I

Degenerate II

Parabolic

Elliptic

Hyperbolic©©©©©*

HHHHHj ©©©©©*

HHHHHj

In the complex case all these results remain valid with one exception: the
elliptic and hyperbolic orbits merge into one.

5



5 Degeneration of Symbols for Linear and

Quasilinear Systems

So far, we have been concerned with the symbol of the system E ⊂ J1(R
2,R2)

at one fixed point θ ∈ E . Let us now see what can be said about the
dependence of the symbol σ(E , θ) on this point θ.

For a general non-linear system the set {σ(E , θ)} constitutes a six-para-
meter family, because the manifold E is six-dimensional.

For a quasilinear system

{
a1(x, y, u, v)ux + b1(x, y, u, v)uy + c1(x, y, u, v)vx + d1(x, y, u, v)vy = 0
a2(x, y, u, v)ux + b2(x, y, u, v)uy + c2(x, y, u, v)vx + d2(x, y, u, v)vy = 0

(1)
this family is constant along the fibers of the projection J1 → J0 and thus in
fact depends only on four parameters.

For a linear system

{
a1(x, y)ux + b1(x, y)uy + c1(x, y)vx + d1(x, y)vy = 0
a2(x, y)ux + b2(x, y)uy + c2(x, y)vx + d2(x, y)vy = 0

(2)

this family only depends on two parameters.
The results obtained in the previous section lead to the following conclu-

sions about the behaviour of the regions in the parameter spaces where the
symbol of the system belongs to one or another type.

Theorem 4 For a linear system (2), the degenerations of the symbol of types
I and II can be eliminated by a small movement. The parabolic points of a
typical system form a curve in the plane (x, y), on one side of which the
symbol of the system is elliptic while on the other side it is hyperbolic. This
picture is stable with respect to small deformations.

For a quasilinear systems (1) all degenerations of the symbol are stable.
In a neighbourhood of every point (x, y, u, v) that belongs to either of the two
degenerate types I or II, there is an entire curve made up of points of the same
type; in a transversal to this curve one can always find parabolic, elliptic and
hyperbolic points which, up to a diffeomorphism, fill up a quadratic cone, its
inner part and its outer part.
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6 Integral Grassmanians

According to [5], with every point θ of a submanifold E ⊂ Jk(X, Y ), one can
associate an algebraic variety IG(E , θ) which consists of all n-planes tangent
to E and integral for the metasymplectic structure naturally defined on the jet
bundle. This variety is called the integral Grassmanian of E at θ; its topology
yields important information about the singularities that may appear in the
solutions of the given system.

It is readily verified that the algebraic (and hence the topological) type
of the integral Grassmanian IG(E , θ) is completely determined by the type
of the symbol σ(E , θ) in the sense of the previous classification and thus
Theorem 2 allows to describe all possible types of integral Grassmanians for
the first order systems 2× 2.

Theorem 5 The integral Grassmanians for the first order systems with two
dependent and two independent variables may belong to one of the following
five topological types defined by the type of the symbol:

Symbol type Integral Grassmanian

Elliptic Sphere S2

Hyperbolic Torus S1 × S1

Parabolic
Torus with a meridian
collapsed to a point

Degenerate I
¡¡ ¡

¡¡ Two intersecting

planes in RP 3

Degenerate II @@R
@@I

a

a
Three-manifold

S2 × [0, 1]/(x, 0) ∼ (−x, 1)
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