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Introduction

It is widely known that the notion of a solvable Lie algebra is closely associated with
differential equations solvable by quadratures and that this theory goes back to Sophus
Lie. However, S. Lie himself never stated the general theorem underlying this fact. His
main book on the subject [Lie] is a collection of geometrical algorithms for solving various
classes of differential equations, unified by the idea of symmetry group. S. Lie managed
to explain the whole variety of existing integration tricks from a uniform stand-point and
also to create new powerful methods of quadrature and reduction.

Symmetries of differential equations can be used to reduce the dimension of the prob-
lem under study in either of the two ways, by passing over to quotient manifolds (first
integration strategy—reduction of order) or by restricting the problem to a submanifold
(second integration strategy—first integrals). One of the examples of the second integra-
tion method is provided by Theorem 49 of [Lie], which says that a linear first order partial
differential equation in 4 variables (equivalent to a non-autonomous system of 3 o.d.e.’s) is
reduced to quadratures, if it has a solvable 3-dimensional symmetry group satisfying cer-
tain non-degeneracy conditions. Propositions of this kind, apparently general in nature, do
not appear in [Lie] as a universal theorem. As writes E. M. Polishchuk in his biographical
book [Pol], ‘this theorem seems to be dissolved in the totality of other Lie’s results about
groups admitted by equations’.

The second integration method of Lie was further developed by Elie Cartan who
thought about the symmetries of arbitrary Pfaff systems (=distributions) in terms of vector
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fields and differential forms. Although E. Cartan, no doubt, understood the general fact
equivalent to Theorem 3 below, he never stated it in [Ca]. Our aim is to clarify the results
of Lie and Cartan placing them in the general differential-geometric context of manifolds
and distributions [KN, St]. We give a precise statement of this theorem in a form that
equally applies to single ordinary differential equations, systems of o.d.e.’s and to arbitrary
systems of partial differential equations of finite type.

During the last 30 years, beginning with the pioneering book by L. V. Ovsiannikov
[Ovs] whose Russian edition was published in 1962, an extensive literature on the symmetry
groups of differential equations has appeared (cf. [Ib], [KLM], [Ol], [BK], [Sph]). We
especially recommend the book by H. Stephani [Sph] which contains precise recipes of
integration procedures, numerous suggestive examples, informal motivations and is very
close to the original S. Lie’s papers both in contents and style. In particular, it is as
informal as possible to be read by people anxious just to solve their favourite ordinary
differential equations.

Although many authors have nicely explained and developed S. Lie’s approach, es-
pecially as regards his first integration method, there does not seem to exist any modern
exposition of the relevant work of Elie Cartan who put the theorem of Lie into a more
general setting. The books listed above do not unveil the differential-geometric background
that unifies the second integration method as applied to ordinary differential equations,
systems of such and finite type systems of partial differential equations. It goes without
saying that specialists in group applications to differential equations know the Lie and
Cartan’s theorem in full generality, yet nobody will give you an exact reference to a writ-
ten mathematical text that contains its precise statement. Our primary aim is to fill this
gap.*

In sections 2 to 6, our style follows that of [BK], [Sph] (and also the classical literature
of the beginning of the century) in that we do not state the exact notion of integration by
quadratures, although it is crucial in the formulation of the main theorem. By doing so, we
just adhere to the state of the art in this area. For the case of linear algebraic differential
equations, the notion of quadratures is readily formalized in the framework of differential
algebra (see [Ko], [Po2]). But, as far as the authors know, until now there have not been
any successful formulations of nonlinear differential algebra that could meet our purposes.
See [Cas] for one of the recent attempts to clarify the interrelation between differential
geometry and differential algebra.

The paper proceeds as follows. In section 1, we recall basic definitions pertaining to
distributions on manifolds and introduce the notion of symmetry. In section 2, we explain
how to find first integrals of distributions using their symmetries. This theory is specialized
for ordinary differential equations and finite type differential systems in sections 3 and
4, respectively. Section 5 contains some illustrative examples of integration of ordinary
differential equations by means of the developed theory. Finally, in Section 6 we propose
a trick which allows to find finite-parametric families of solutions of partial differential
equations with ample symmetry algebras by reducing the problem to that of integration

* While revising the manuscript, the authors came across the research report by J. Sherring and

G. Prince [SP] where Cartan’s ideas are discussed in a spirit close to our own, but with applications only

to systems of ordinary differential equations.
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of a completely integrable distribution.

1. Symmetries of distributions
We begin by recalling some basic facts about distributions (see [KN], [St] for details).

Let P be a distribution of dimension m and codimension k on a smooth manifold M .
This means that dim M = m + k and at every point x of M an m-dimensional subspace
Px of the tangent space TxM is specified in such a way thet Px smoothly depends on x.
Let

D(P ) = {V ∈ Vect(M) | Vx ∈ Px ∀x ∈ M}
be the set of all smooth vector fields lying in the distribution P and

Λ(P ) = {ω ∈ Ω1(M) | ω(V ) = 0 ∀V ∈ D(P ) }

the set of all differential 1-forms vanishing on vectors from P .
Both D(P ) and Λ(P ) are modules over the ring of smooth functions C∞(M) and

a distribution is fixed whenever one specifies a system of generators of either of these
modules. Both modules are usually free (this is always the case with their localizations
to an appropriate open everywhere dense subset of M), so all one has to specify is either
a set V1, . . . , Vm of vector fields whose values at every point of the manifold are linearly
independent or a set ω1, . . . , ωk of 1-forms subject to the same requirement.

Example 1. The 1-form ω = dy − zdx does not vanish in any point of the 3-space
R3, so it defines a distribution of dimension 2 and codimension 1. For reasons explained
below, it is called Cartan’s distribution. A basis of the module D(P ) is formed by vector
fields V1 = ∂x + z∂y and V2 = ∂z.

Example 2. Let M = R × R+ × S1 with coordinates x ∈ R, y ∈ R+, ϕ ∈ S1 =
R mod 2π. The 1-form

ω = 2 sin2 ϕ

2
dx + sin ϕdy − y dϕ

defines the so called oricycle distribution (explanation below). In this example both mod-
ules D(P ) and Λ(P ) are again free.

Example 3. We will describe this one in plain English, without formulas. Imagine
a Möbius band and at every point of its surface the line, lying in the tangent plane and
perpendicular to the central circle of the band. Both modules D(P ) and Λ(P ) associated
with this distribution are not free, because the fibering of the Möbius band over its central
circle is non-trivial. But both modules become free as soon as we cut the band in such a
way that it becomes topologically trivial.

A distribution is by definition an infinitesimal object. It is connected with the world
of finite things via the notion of integral manifold. A submanifold N ⊂ M is said to be
integral for the distribution P if TxN ⊂ Px for all x ∈ M . An integral manifold is maximal
if it is not contained in an integral manifold of greater dimension. For example, lines on
the surface of the Möbius band which are perpendicular to the base circle, are maximal
integral manifolds for the above mentioned distribution.

A distribution is said to be completely integrable if the dimension of every maximal
integral manifold is exactly m, the dimension of the distribution itself. In this case the
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entire manifold is the disjoint union of maximal integral manifolds of the distribution, which
are the leaves of a foliation, so that the notion of a completely integrable distribution is
equivalent to that of a foliation.

The striped Möbius band of Example 3 above is obviously a foliation (see Fig. 1).
It is somewhat more difficult to decide whether the distributions of Examples 1 and 2
are completely integrable. The classical Frobenius’ theorem gives two equivalent criteria
for checking the complete integrability of a distribution. They are: 1) D(P ) should be a
Lie algebra, and 2) the differential of any 1-form from Λ(P ) should belong to the ideal
generated by Λ(P ). In the case of a distribution defined by a single 1-form ω the second
condition simply means that ω ∧ dω = 0.

The reader can readily verify that this condition holds for Example 2 and fails for
Example 1. Maximal integral manifolds for the Cartan distribution are 1-dimensional; they
will be described later in section 3. Maximal integral manifolds of the oricycle distribution
are 2-dimensional; they can be easily found in a straightforward manner, but we will do
that in a more elegant way — using symmetries — just to illustrate the meaning and the
scope of applications of the latter.

By a (finite) symmetry of the distribution P we understand a (possibly local) diffeo-
morphism f : M → M which takes P into itself, i.e. such that f∗(Px) ⊂ Pf(x) for all
x ∈ M . A vector field X is said to be an (infinitesimal) symmetry of the distribution if
the flow generated by X consists of finite symmetries. The infinitesimal approach turns
out to be much more constructive than its finite counterpart, so in what follows the word
symmetry will always mean infinitesimal symmetry unless otherwise explicitely specified.

Example 4. In Examples 1 and 2 given above, the vector field ∂x is a symmetry,
because in both examples the coefficients of the basic 1-form ω do not depend on x and
hence the corresponding finite transformations, i.e. translations in x, preserve these forms.
In example 3, the infinitesimal rotation of the Möbius band along its center circle is also
a symmetry.

The set of all symmetries Sym(P ) forms a Lie algebra with respect to vector fields
commutator, because finite symmetries obviously make a group. The following theorem
allows one to deduce this fact by a simple manipulation with formulas. It gives two
constructive characterizations of the symmetry algebra, one in terms of the associated
module of vector fields D(P ), and another in terms of the dual module of 1-forms Λ(P ).

Theorem 1. The following conditions are equivalent:
(1) X ∈ Sym(P ),
(2) [X,D(P )] ⊂ D(P ),
(3) LX(Λ(P )) ⊂ Λ(P ),
where LX is the Lie derivative operator along the vector field X.

Proof. Choose some (possibly local) bases V1, . . . , Vm and ω1, . . . , ωk in the C∞(M)-
modules D(P ) and Λ(P ), respectively. Conditions (2) and (3) can be rewritten as follows:

(2) there exist such functions αij that for all i one has

[X, Vi] =
m∑

j=1

αijVj ,
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(3) there exist such functions βij that for all i one has

LX(ωi) =
k∑

j=1

βijωj ,

The theorem follows from the three implications (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (1), and
we are going to prove them succesively.

(1) ⇒ (2). Let {Gt} be the 1-parametric transformation group corresponding to the
vector field X which is a symmetry of P . Then for every time moment t ∈ R and all
i = 1, . . . , m we have

(Gt)∗(Vi) =
m∑

j=1

λij(t)Vj ,

where λij is a family of smooth functions on the manifold M smoothly depending on the
parameter t.

Differentiating this over t at t = 0 and using the formula

LX(V ) = − d

dt

∣∣∣
t=0

(Gt)∗(V ),

one gets

[X, Vi] =
m∑

j=1

αijVj ,

with
αij = − d

dt

∣∣∣
t=0

λij(t).

(2) ⇒ (3). Suppose that a vector field X satisfies (2). Now take a 1-form ω which
vanishes on all the vector fields V1, . . . , Vm and prove that LX(ω) has the same property
(and hence can be represented as a linear combination of ω1, . . . , ωk). Indeed, for all
i = 1, . . . , m we have

LX

(
ω(Vi)

)
=

(
X dω + d(X dω)

)
(Vi)

= dω(X,Vi) + Vi(ω(X))

= X
(
ω(Vi)

)− ω
(
[X,Vi]

)
= 0

(3) ⇒ (1). Consider the following differential (k + 1)-forms, dependent upon the
parameter t:

Ωi(t) = G∗t (ωi) ∧ ω1 ∧ . . . ∧ ωk.

Since G∗0(ωi) = ωi, we have Ωi(0) = 0. We are going to prove that Ωi(t) ≡ 0; this will
imply that G∗t (ωi) is a linear combination of ω1, . . . , ωk for all t and that X is indeed a
symmetry of the distribution P . We have:

d

dt
Ωi(t) = G∗t (LXωi) ∧ ω1 ∧ . . . ∧ ωk =

k∑

j=1

G∗t (βij)Ωj(t),
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which means that the vector consisting of (k +1)-forms
(
Ω1(t), . . . , Ωk(t)

)
, is a solution to

a linear homogeneous system of ordinary differential equations with zero initial conditions.
Hence, it must vanish identically.

This completes the proof of the theorem.

Example 5. A simple computation using either of conditions 2 or 3 of the theorem,
shows that vector field X = y ∂y + sin ϕ ∂ϕ is a symmetry of the oricycle distribution (see
Example 2 above).

2. Symmetries and integration
The problem of integration of a distribution consists in describing its maximal integral
manifolds. For a completely integrable distribution, this is equivalent to finding a complete
set of first integrals. A function h ∈ C∞(M) is called a first integral of the distribution P
if every integral manifold of P lies entirely in some level surface {x ∈ M | h(x) = const}
of this function, or, equivalently, if V (h) = 0 for any V ∈ D(P ). A complete set of first
integrals of the distribution P is a set of functions whose mutual level surfaces

{x | h1(x) = c1, . . . , hk(x) = ck}

represent the set of all maximal integral manifolds of P .
If X is a symmetry with the flow {Gt} and Q a maximal integral manifold of the

distribution P , then Gt(Q) is also a maximal integral manifold for any t. That is, the
1-parameter transformation group generated by a symmetry preserves the set of maximal
integral manifolds (but possibly rearranges them in some other order). There is, however,
a distinguished class of symmetries which leave invariant every particular maximal integral
manifold. These are called characteristic symmetries. By definition, a symmetry of the
distribution P is said to be characteristic if it lies in P (or, more exactly, belongs to D(P )).
Transformations corresponding to a characteristic symmetry move every maximal integral
manifold along itself.

Example. The symmetry mentioned above in Example 5 is characteristic while those
given in Example 4 are not.

The classical theorem of Cartan [St] implies that the set of all characteristic symme-
tries

Char(P ) = Sym(P ) ∩D(P )

is an ideal of the Lie algebra Sym(P ). Elements of the quotient algebra

Shuf(P ) = Sym(P )/ Char(P )

will be referred to as shuffling symmetries of the distribution P . Flows corresponding to
different representatives of a class

X̄ = X mod Char(P )

rearrange (shuffle) the set of maximal integral manifolds of P in the same way.
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Now suppose that k = codim P and G ⊂ Shuf(P ) is a k-dimensional Lie subal-
gebra which is transversal to the distribution in the sense that the natural mapping
πx : Shuf(P ) → Tx(M)/Px is bijective at every point x ∈ M . Let X̄1, . . . , X̄k, where

X̄i = Xi mod Char(P ), Xi ∈ Sym(P ),

be a basis of G while ω1, . . . , ωk be a basis of the C∞(M)-module Λ(P ). The transversality
condition for the algebra G is equivalent to the requirement that the matrix

Ξ = ‖ωi(Xj)‖ (1)

be nondegenerate at any point of the manifold. Hence one may choose another basis
ω′1, . . . , ω

′
k of the module Λ(P ) in such a way that the corresponding matrix ‖ω′i(Xj)‖

would be the unit matrix. This can be achieved by setting



ω′1
...

ω′k


 = Ξ−1




ω1
...

ωk




Note that the values ωi(Xj) do not depend on the choice of representatives Xj ∈ X̄j ∈
Shuf(P ).

Theorem 2. Let P be a completely integrable distribution defined by the set of
1-forms ω1, . . . , ωk. Let X̄1, . . . , X̄k be the basis of an algebra of shuffling symmetries
G ⊂ Shuf(P ). Suppose that ωi(Xj) = δij and

[X̄i, X̄j ] =
k∑

s=1

cs
ijX̄s,

where cs
ij ∈ R. Then

dωs = −1
2

∑

i,j

cs
ijωi ∧ ωj .

Proof. By Frobenius’ theorem, dωs =
∑

j γsj∧ωj , where γij are appropriate 1-forms.
Under the conditions specified, these 1-forms actually belong to Λ(P ), i.e. vanish on the
vectors from the distribution. To see this, one should make use of the formula

LXi(ωs) = d(Xi ωs) + Xi dωs.

According to Theorem 1, LXi(ωs) ∈ Λ(P ). Besides, by the premises of the present theorem,
d(Xi ωs) = 0 for all i, s. Hence Xi dωs =

∑
j γsj(Xi)ωj − γij ∈ Λ(P ), which implies

that γij ∈ Λ(P ) and therefore
dωs =

∑

i<j

αs
ijωi ∧ ωj
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for some appropriate functions αij ∈ C∞(M). It follows that

dωs(Xi, Xj) = αs
ij ,

for i < j. On the other hand,

dωs(Xi, Xj) = Xi(ωs(Xj))−Xj(ωs(Xi))− ωs([Xi, Xj ]) = −ωs(
k∑

r=1

cr
ijXr) = −cs

ij .

Therefore αs
ij = −cs

ij and

dωs = −
∑

i<j

cs
ijωi ∧ ωj = −1

2

∑

i,j

cs
ijωi ∧ ωj .

Corollary. If the algebra G is commutative, then in the conditions of the theorem a
complete set of first integrals of the distribution can be found by quadratures.

Indeed, in this case all the forms ωi are closed and thus locally exact: ωi = dhi for
some smooth functions h1, . . . , hk. These functions can be recovered by computing the
integrals

hi(a) =
∫ a

a0

ωi,

where a0 is a fixed point of the manifold M .

Remark. As we mentioned in the introduction, we use the words ‘integration by
quadratures’ in a somewhat vague sense. When we say that something can be found by
quadratures, we mean that this something belongs to a suitable Liouville type extension of
the basic field and there is an algorithmic procedure to recover it using known data. How-
ever, a notion of Liouville type differential extensions which is wide enough to incorporate
finding implicit functions in the nonlinear case, is still awaiting its precise definition.

Example 6. Let us find a first integral of the oricycle distribution of Example 2 using
its symmetry written down in Example 4 and in the last end explain the origin of this title
to an inquisitive reader.

We have ω = 2 sin2 ϕ
2 dx + sin ϕdy − y dϕ and X = ∂x. The pairing ω(X) = 2 sin2 ϕ

2
is non-zero, so we can take another basic 1-form

ω′ =
1

2 sin2 ϕ
2

ω = dx + cot
ϕ

2
dy − 1

2 sin2 ϕ
2

dϕ,

which must be exact, according to the theorem. And it really is. In fact,

ω′ = d
(
x + y cot

ϕ

2
)
.

We see that the meaning of symmetries in this context is that they allow one to find
the integrating factor for a Pfaffian equation.
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Now about the sense of the term ‘oricycle’. Consider the upper half-plane

H = {x, y | y > 0}

as a model of the Lobachevsky geometry. The role of straight lines in this model is played
by semi-circles perpendicular to the x-axis (the ‘absolute’). Let M be the unitary tangent
manifold of H, i.e. the set of all unit tangent vectors. As the third coordinate ϕ on the 3-
dimensional manifold M , we will take the angle between the upward vertical direction and
the given vector (see Fig. 2). A simple calculation shows that a Lobachevsky line issuing
from the point (x, y) at angle ϕ, arrives at the point of the ‘absolute’ with coordinate
x + y cot ϕ

2 . This expression is the above found first integral of the distribution under
study. It remains to note that the set of all vectors tending to the same point of the
‘absolute’, is called ‘oricycle’ in hyperbolic geometry.

Now suppose that we know a transversal algebra G of shuffling symmetries of a dis-
tribution P , which is not commutative. We will show that if this algebra is solvable then
it is possible to decompose the problem of finding a complete set of first integrals for P
into a finite number of steps, every one of which matches the assumptions of the Corollary
above.

Denote the commutator subalgebra of G by G(1) and suppose that G(1) 6= G. Then
one can choose a basis X̄1, . . . , X̄k of G in such a way that X̄1, . . . , X̄r 6∈ G(1) while
X̄r+1, . . . , X̄k ∈ G(1). In this case cs

ij = 0 for all i, j, if s ≤ r. Choose the basis ω1, . . . , ωk

of Λ(P ) in such a way that ωi(Xj) = δij . Theorem 2 implies that 1-forms ω1, . . . , ωr are
closed and hence in some open domain ω1 = dh1, . . . , ωr = dhr. For an arbitrary choice
of constants c = (c1, . . . , cr) the level surface

Hc = {h1 = c1, . . . , hr = cr}

is invariant under the commutator subalgebra G(1), since Xj(hi) = ωi(Xj) = 0 if j ≥ r+1,
i ≤ r.

Let Pc be the restriction of distribution P to the surface Hc. Distribution Pc is
completely integrable — the foliation of M whose leaves are maximal integral manifolds
of P cuts a foliation on the surface Hc. The dimension of Pc is equal to the dimension of
P while its codimension is k − r = dimG(1).

Observe that the restriction G(1)|Hc constitutes a transversal algebra of shuffling sym-
metries of the distribution Pc. Indeed, a shift along the trajectories of any field X such
that X̄ ∈ G(1) shuffles the leaves of distribution P and preserves the manifold Hc; hence it
must also shuffle the leaves of distribution Pc. Transversality of G(1) follows from the fact
that ‖ωi(Xj)‖, r < i, j ≤ k, is the unit matrix, due to the above assumptions.

We can subject the pair (Pc, G(1)|Hc) to the same procedure which was formerly
applied to the pair (P, G). More precisely: let G(2) = [G(1),G(1)] be the commutant of
G(1). If G(2) 6= G(1), then some of the 1-forms ωr+1, . . . , ωk are closed and give rise to local
first integrals of the distribution Pc. Distribution Pc can be restricted to the mutual level
surface of these integrals, etc.

Now suppose that the algebra G is solvable, i.e. the sequence G ⊃ G(1) ⊃ G(2) ⊃ . . .,
where G(i+1) = [G(i),G(i)], becomes zero after a finite number of steps. Then the above
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described procedure sooner or later will pose one into the conditions of the Corollary of
Theorem 2. Whence:

Theorem 3. Let P be a distribution of codimension k. Suppose that a solvable
k-dimensional algebra of shuffling symmetries of P , transversal to P , is known explicitely.
Then P is integrable by quadratures, i.e. one can find a complete set of first integrals for
P by integrating closed 1-forms and solving functional equations.

By solution of functional equations (called so to distinguish them from differential
equations) we mean finding functions defined by implicit formulas

F (z1, z2, . . . , zn) = 0 ⇒ z1 = f(z2, . . . , zn).

We will show how this theorem works on examples from the area of differential equations.
But first we will explain the connection between equations and distributions.

3. Equations as distributions
In this section we will show how the above described algorithm can be applied to ordinary
differential equations, giving the ‘second integration procedure’ of S. Lie (see [Sph] for a
more traditional exposition).

The study of an ordinary differential equation

F (x, y, y′, . . . , y(k)) = 0 (2)

can be reduced to the study of a distribution in the following way.
Let JkR be the manifold of k-jets of smooth functions on the line R. By definition,

this is a space whose points correspond to all conceivable sets of values taken by the
independent variable x (coordinate in R), dependent variable y and the derivatives of the
latter with respect to the former up to order k. Hence, JkR is a (k +2)-dimensional space
Rk+2 whose coordinates can be designated by x, y, p1, . . ., pk.

Let C be the distribution in JkR defined by the set of 1-forms

ω0 = dy − p1dx,

ω1 = dp1 − p2dx,

. . .

ωk−2 = dpk−2 − pk−1dx,

ωk−1 = dpk−1 − pkdx.

(3)

Following [KLV], we will call C the Cartan’s distribution. A particular case of this object
appeared earlier as Example 1.

The characteristic property of Cartan’s distribution, which shows its importance in
the theory of differential equations, consists in the following. A curve in JkR that projects
on the x-axis without degeneration, is integral for C if and only if it has the form

y = y(x), p1 = y′(x), . . . , pk = y(k)(x), (4)
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where y(x) is a smooth function of x. Apart from these, there are maximal integral
manifolds of the second kind, namely straight lines parallel to the pk axis. A general
maximal integral manifold may include portions of both types, fitted together to make a
smooth curve (see [KLV] for the proof).

Equation (2) corresponds to a hypersurface E ⊂ JkR, defined by

F (x, y, p1, . . . , pk) = 0,

The 2-dimensional Cartan’s distribution C, when restricted to E , produces a 1-dimensional
distribution CE , which will be referred to as the Cartan’s distribution of the equation E .
Maximal integral manifolds of this distribution can contain segments parallel to the pk

axis as well as portions of curves (4), where y(x) must be a solution to equation (2) in
order that the curve should lie on E . These pieces are put together in the points where
the projection to the x-axis degenerates, and such points may constitute only a discrete
set on the curve.

Example 7. Consider the equation

yy′ + x = 0.

We can take the variables y and p = y′ for coordinates on the corresponding surface E ⊂
J1R. In these coordinate system the distribution CE is given by (1+p2)dy +yp dp = 0. Its
integral curves y = C(1+p2)−1/2 are depicted in Fig. 3a. Every pair of symmetrical curves
produces one of the circles in the (x, y)-plane which correspond to two-valued solutions of
the equation and are shown in Fig. 3b. Besides, there is a singular integral curve y = 0 on
E which corresponds to the origin point in the (x, y)-plane and gives rise to no solution.

A vigilant reader might have noticed a flaw in our previous argument: there can exist
such points x ∈ E where the plane of the Cartan’s distribution is contained in TxE and
thus dim CE = 2 at x. In this case CE is no distribution at all. The study of such singular
points requires special analysis. We will avoid it by confining ourselves from now on to
equations resolved with respect to the highest derivative

y(k) = f(x, y, y′, . . . , y(k−1)). (5)

It should be noted, however, that a major part of our considerations can be, mutatis
mutandis, transferred to the general case.

For an equation of type (5) the integral manifolds of the Cartan’s distribution can only
consist of portions of type (4), so that the problem of finding the (multivalued) solutions
of such an equation is equivalent to that of finding integral manifolds of the distribution
CE . This distribution is 1-dimensional and hence completely integrable. Its codimension is
equal to the order k of the equation under study. Theorem 3 applied in this environment
gives rise to the following

Theorem 4. If one knows explicitely a solvable k-dimensional transversal Lie algebra
of symmetries of an ordinary differential equation of order k, then one can find the general
solution of this equation by quadratures.
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By symmetries of the differential equation we understand shuffling symmetries of its
Cartan’s distribution, i.e. elements of the quotient space

Sym(E) = Shuf(CE) = Sym(CE)/ Char(CE).

Elements of this space have a convenient description in terms of the so called generating
functions ([KLV],[Ib]). After introducing these, we will explain what does the notion of
transversality mean in terms of generating functions.

Let us view x, y = p0, p1, . . ., pk−1 as coordinates on the hypersurface E . In this
coordinate system any vector field is written as

X = α
∂

∂x
+ β0

∂

∂p0
+ . . . + βk−1

∂

∂pk−1
.

Note that the C∞(M)-module of characteristic symmetries of CE is generated by the field

D =
∂

∂x
+ p1

∂

∂p0
+ . . . + pk−1

∂

∂pk−2
+ f

∂

∂pk−1
, (6)

the total derivative operator with respect to x on the equation E . Hence, in the quotient
algebra Sym(E) the following relation holds:

∂

∂x
≡ −p1

∂

∂p0
− . . .− pk−1

∂

∂pk−2
− f

∂

∂pk−1
mod Char(CE),

and it is sufficient to search symmetries only among vector fields of the form

X = β0
∂

∂p0
+ . . . + βk−1

∂

∂pk−1
.

Suppose that such a field X is a symmetry of the Cartan’s distribution. In virtue of
theorem 1, this means that the 1-forms LX(ωi), 0 ≤ i < k, belong to Λ(CE), i.e. they are
linear combinations of 1-forms ω0, ω1, . . ., ωk−1 with functional coefficients. Computing
these Lie derivatives for i < k − 1, we obtain

LX(ωi) = (D(βi)− βi+1) dx mod Λ(CE).

The latter 1-form is in Λ(CE) if and only if βi+1 = D(βi). Denoting β0 by ϕ, we arrive at
the following expression for X:

X = Xϕ =
k−1∑

i=0

Di(ϕ)
∂

∂pi
. (7)

In particular, we see that the field X is entirely defined by one function ϕ, which is equal
to the value of X on y. This function ϕ will be referred to as the generating function of
the vector field Xϕ.
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The space of Lie vector fields is thus isomorphic to the space of smooth functions in
x, p0, . . . , pk−1 and we only have to transfer the commutator operation from the Lie algebra
of vector fields to the space of functions. The resulting operation is given by the Poisson
type formula

{ϕ, ψ} =
k−1∑

i=0

Di(ϕ)
∂ψ

∂pi
−

k−1∑

i=0

Di(ψ)
∂ϕ

∂pi

and will be exploited later in section 5.
The generating function of a symmetry of a given differential equation cannot be

arbitrary. The condition LX(ωk−1) ∈ Λ(CE) which can be rewritten as

(
Dk(ϕ)−

k−1∑

i=0

Di(ϕ)
∂f

∂pi

)
dx ≡ 0 mod Λ(CE)

implies that ϕ must satisfy differential equation ∆(ϕ) = 0, where the operator ∆ ranging
in the space of smooth functions in x, p0, . . . , pk−1 is defined by

∆ = Dk −
k−1∑

i=0

∂f

∂pi
Di

(in the terminology of [KLV], operator ∆ is the universal linearization of the function
F = pk − f restricted to the equation E).

The discussion we have just finished can be summarized as follows.

Theorem 5. Sym(E) ∼= Ker∆; this isomorphism is effectuated by the correspondence
Xϕ ↔ ϕ, where Xϕ is defined by (6).

Since evidently ωi(Xϕ) = Di(ϕ) for the basic 1-forms (3) of the Cartan’s distribution,
the pairing matrix (1) becomes Ξ = Di(ϕj), so that the algebra generated by ϕ1, . . . , ϕk

is transversal if and only if this matrix is non-degenerate.
Our approach to symmetries of differential equations is related to the classical S.Lie’s

approach in the following way. Consider a vector field Y which is a symmetry of the
Cartan’s distribution C in JkR. If Y is tangent to the equation E ∈ JkR, then its
restriction to E defines a symmetry of the distribution CE . In this case Y is said to
be an outer symmetry of the equation E . Symmetries of the equation E in the sense
adopted above, i.e. symmetries of the distribution CE , can be, correspondingly, called
inner symmetries. Restrictions of outer symmetries to E are distinguished from the set of
all inner symmetries by the property that their generating function depends only on x, y,
p1. This follows from the theorem of Lie and Bäcklund: every symmetry of the distribution
C coincides with the natural lift to JkR of some contact vector field in J1R. The lifting
procedure is described in [IB, KLV, OL]; we shall not need its full description — for our
aims it suffices to note that the contact field with generating function ϕ is

Kϕ = −ϕp
∂

∂x
+ (ϕ− pϕp)

∂

∂y
+ (ϕx + pϕy)

∂

∂p
,

13



where p = p1, and its lift to JkR differs from the right-hand part of this expression only in
terms containing ∂/∂p2, . . . , ∂/∂pk. Vector field Kϕ coincides with the restriction of the
operator Xϕ − ϕpD to the space of functions in x, y, p. Therefore, if Xϕ is a symmetry
of E , then both Xϕ and the lift of Kϕ specify the same element of the quotient space
Sym(E).

A particular class of contact fields is composed of lifts of the so called infinitesimal
point transformations, i.e. infinitesimal changes of independent and dependent variables or,
in other words, vector fields in the space J0R with coordinates x, y. Point transformations
may be characterized by linear dependence of their generating functions on p. Indeed,
according to (7), the generating function of a symmetry X is recovered by means of the
formula ϕ = ω0(X) and

ω0(α
∂

∂x
+ β

∂

∂y
+ . . .) = β − αp.

Examples. Here are point transformations which are most frequently encountered in
applications.

1. Translation in x is the lift of the field ∂/∂x with generating function −p.
2. Translation in y is the lift of the field ∂/∂y with generating function 1.
3. Scale transformation is the lift of ax∂/∂x + by∂/∂y, a, b ∈ R. Its generating

function is by − apx.

Remark. By commuting translations and scale transformations, one always obtains
translations, so that any Lie algebra consisting of vector fields of these two kinds, is solvable.

As the reader may see, the ‘inner’ approach to symmetries is wider than the ‘outer’
approach which is confined only to contact transformations. From the ‘outer’ viewpoint,
symmetries of the Cartan’s distribution of an equation E should be considered as ‘higher
symmetries’, since they are restrictions to E of symmetries of the Cartan’s distribution on
the space of jets of infinite order [KLV]. H. Stephani [Sph] calls them ‘dynamic symmetries’.

However, all these ‘higher’ symmetries of ordinary differential equations can be re-
duced to mere point symmetries if one studies, instead of a single equation, the corre-
sponding first order system. We will explain the relevant theory in the general context of
finite type systems.

14



4. Finite type systems
Let us be given a system of differential equations

F1(x, u,
∂u

∂x
) = 0,

. . .

Fr(x, u,
∂u

∂x
) = 0,

(8)

where u and x stand for the sets of dependent and independent variables u1, . . . , um and
x1, . . . , xn, respectively, while ∂u/∂x designates the set of all derivatives of the former over
the latter up to a fixed order k.

The study of such system is geometrized like before, by considering the submanifold E
in the jet space Jk(n,m) equipped with the Cartan’s distribution. A natural system of
coordinates in Jk(n,m) is composed of all xi for i = 1, . . . , n, all uj for j = 1, . . . ,m
and variables uj

σ where 1 ≤ j ≤ m while σ = i1i2 . . . in is a multiindex with |σ| =
i1 + i2 + · · · + in ≤ k. The Cartan’s distribution is defined by the set of 1-forms ωj

σ =
duj

σ −
∑n

i=1 uj
σ+(i)dxi for all j = 1, . . . , m and |σ| ≤ k − 1, where σ + (i) is obtained

from σ by augmenting its i-th component by 1. Solutions of equation* (8) correspond to
n-dimensional integral manifolds of the restricted distribution CE whose projection to the
(x1, . . . , xn)-plane is non-degenerate.

The above described general notation for jet coordinates is rather cumbersome, so in
the situation when we have one unknown function u of two independent variables x, y, we
will make use of Monge’s notation

x, y, u, p, q, r, s, t

instead of x1, x2, u1, u1
10, u

1
01, u

1
20, u

1
11, u

1
02, respectively.

Example 8. Consider the system

∂u

∂x
=

1− cosu

y
,

∂u

∂y
=

sin u

y

in one unknown function u of two independent variables x, y. The relevant jet space
J1(2, 1) is 5-dimensional with coordinates x, y, u, p, q. The equation under study specifies
a 3-dimensional submanifold

{p =
1− cos u

y
, q =

sin u

y
}

in this space, and the form of Cartan

du− pdx− qdy,

* Here and below the word equation (singular) will be used as synonym to system of equations.
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when restricted to this submanifold, becomes

du− 1− cos u

y
dx− sin u

y
dy,

which coincides, up to notations and a non-zero factor, with the 1-form ω of Example 2,
provided that u is considered as a function defined in the upper half of the (x, y)-plane and
taking values modulo 2π. It follows that our system has a 1-parametric family of solutions
given by maximal integral manifolds of the oricycle distribution.

A system of differential equations is said to have finite type if its solution space is
finite-dimensional. Any system of ordinary differential equations is obviously of finite
type. In order that a system of partial differential equations might have finite type, it
normally needs to be overdetermined in the sense that the number of equations in the
system should exceed the number of unknown functions.*

If the Cartan’s distribution of an equation is n-dimensional and completely integrable,
as in Example 8, this equation is sure to have finite type. However, this is not the only
class of finite type systems.

Example 9. The system
uxx = 0
uyy = 0

is evidently of finite type, since its solutions are exausted by the 4-parametric family
u = axy + bx + cy + d, a, b, c, d ∈ R. However, the corresponding geometric image is a
6-dimensional plane {r = 0, t = 0} in the 8-dimensional manifold J2(2, 1) whose Cartan
distribution given by

du− pdx− qdy = 0
dp− sdy = 0
dq − sdx = 0,

is 3-dimensional and not completely integrable.
If we consider the first prolongation of this system

uxxx = 0
uxxy = 0
uxyy = 0
uyyy = 0,

obtained by taking total derivatives of all the equations of the initial system, we will arrive
at a 8-dimensional submanifold (a plane, to be exact) in the jet space J3(2, 1) ∼= R12

equipped with a 2-dimensional completely integrable distribution. Thus, this example
also can be studied in terms of completely integrable distributions, but to effectuate this
reduction, one first has to prolongate the equation.

* This is always true, e.g., when the system is involutive (see [Ts], [Po1]).
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The above definition of finite type systems is not constructive in the sense that one
should know the size of the space of solutions in order to decide whether the system is
of finite type. There is a class of systems for which one can easily say that they are of
finite type. We are speaking about systems whose infinite prolongation (see [KLV], [Ts])
is finite-dimensional. This implies that after some number of prolongations the system
can be resolved with respect to all derivatives of a fixed highest order k. In this case all
variables ui

σ with |σ| ≥ k can be expressed through xj , us and us
τ with |τ | < k, so that

the space A = C∞(Jk−1) of smooth functions on the manifold of (k − 1)-jets serves as a
closed universe for all calculations related to the given system—much in the same way as
the space of functions in x, y, y1, . . . , yk−1 did in the case of ordinary differential equations.

In this space A the restrictions of total derivative operators

Di =
∂

∂xi
+

∑

σ,j

uj
σ+(i)

∂

∂uj
σ

are defined. A generating function of a symmetry is represented by a row (ϕ1, . . . , ϕm) ∈
Am , where m is the number of dependent variables u1, . . . , um. The vector field in Jk−1

corresponding to this function is given by the formula

X(ϕ1,...,ϕm) =
∑

σ,j

Dσ(ϕj)
∂

∂uj
σ

,

where Di1,...,in = Di1
1 ◦ · · · ◦Din

n . The generating function of a symmetry for a system like
(8) should satisfy r equations

∑

σ,j

∂Fi

∂uj
σ

Dσ(ϕj) = 0, i = 1, . . . , r.

This constitutes a counterpart of Theorem 5 in the case of finite type systems. All these
formulas are valid for general systems of p.d.e.’s, but they have to be considered in infinite-
dimensional spaces (see [KLV], [Ts] for proofs and details).

Example. The finite type system

ux = yv,

uy = xv,

vx = yu,

vy = xu

is described by a 4-dimensional surface with coordinates x = x1, y = x2, u = u1, v = u2 in
8-dimensional jet space J1(2, 2). Below, we give the step-by-step records of the integration
procedure of Section 2 applied in this case (however, not explaining how the symmetries
S1 and S2 were found).
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Basic forms of Cartan’s distribution

ω1 = du− yvdx− xvdy,

ω2 = dv − yudx− xudy.

Symmetries:

S1 = u
∂

∂u
+ v

∂

∂v
,

S2 = exy(
∂

∂u
+

∂

∂v
).

Their generating functions:

ϕ1 =
(

u
v

)
, ϕ2 =

(
exy

exy

)
.

Pairing matrix Si(ϕj):

Ξ =
(

u exy

v exy

)
.

New basic 1-forms:

(
ω′1
ω′2

)
= Ξ−1

(
du− yvdx− xvdy
dv − yudx− xudy

)
=

(
d(u−v)

u−v + d(xy)
−vdu+udv
exy(u−v) − e−xy(u + v)d(xy)

)

First integrals:

ω′1 = d[log(u− v) + xy] ∼ dh1, h1 = exy(u− v),

ω′2
∣∣
h1=const

= d[e−xy(u + v)], h2 = e−xy(u + v).

General solution:
u = C1e

xy + C2e
−xy,

v = C1e
xy − C2e

−xy.
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5. More examples for o.d.e.’s

Here we give several examples of how the Theorem 4 can yield explicit solutions for
o. d. e. ’s. Further examples can be found in an extensive literature that comprises,
e.g., the books [Ol], [Ovs], [Sph], [BK]. Note that the fundamental problem related to our
method is to find enough symmetries of a given differential equation in order that the
integration procedure could work. In Example 12, we show how one does this by equating
coefficients in the case of point symmetries. This technique is already quite traditional and
is described here for the sake of the readers who are not familiar with the literature. One
should note, however, that in recent years many computer programs have appeared that
enable one to search the symmetries interactively. Among these, we would like to men-
tion the well-known REDUCE package by F. Schwarz and the DELiA program referred to
below in the Acknowledgements.

Example 10. Let E be the linear equation

αky(k) + · · ·+ α1y
′ + α0y = g,

where αk, . . . , α1, α0, g are given functions of x. An arbitrary solution of the corresponding
homogeneous equation

αky(k) + · · ·+ α1y
′ + α0y = 0

is a symmetry (generating function of a symmetry, to be precise) of the initial equation.
The space of all solutions makes a k-dimensional commutative algebra, and if one knows
its basis, i.e. a fundamental system of solutions of the homogeneous equation, then the
inhomogeneous equation can be integrated by means of quadratures.

The computations needed to actually carry out the integration in this case, are pre-
cisely the same which one comes accross when applying the usual trick of ‘variation of
constants’. In particular, the matrix Ξ here consists of functions of x and hence is nothing
but the usual Wronski matrix of the fundamental system involved.

Example 11. In the well-known reference book on ordinary differential equations
[Ka] one can find the following equations:

4y2y′′′ − 18yy′y′′ + 15y′3 = 0,

9y2y′′′ − 45yy′y′′ + 40y′3 = 0,

which are treated as separate examples (No. 7.8 and 7.9). For each of them, a separate
solution procedure is recommended. However, it is readily seen that both equations as well
as the arbitrary equation of the form

ay2y′′′ + byy′y′′ + cy′3 = 0, a, b, c ∈ R, (9)

possess a 3-dimensional solvable Lie algebra of symmetries consisting of the translation
in x and two independent scale transformations. It is convenient to take the functions
ϕ1 = y, ϕ2 = p, ϕ3 = y + xp for a basis of the symmetry algebra and follow the above
described scheme to accomplish the integration.
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Remark. This equation can be integrated in three steps by succesively lowering
its order, using first the translation invariance and then invariance with respect to the
two scale transformations. Thus, the procedure of Lie and Cartan is a generalisation of
standard methods of order reduction. Note that the sequence in which the symmetries
are used in this procedure should conform to the Lie algebra structure of the given set of
symmetries. For example, if one tries to use scale invariance of equation (9) first, then the
translation symmetry will be lost. In general, on the first step the symmetries belonging
to the last (smallest) commutator subalgebra should be used.

Example 12. This one is the longest example in all the paper— it even incorporates
a theorem. In compensation, an industrious reader will have an opportunity to see in full
detail how all the machinery works and what kind of results one is supposed to obtain.
We will find all equations of the form

y′′ = y′ + f(y), (10)

which possess a two-dimensional Lie algebra of point symmetries and then find the explicit
expression for solutions of these equations in terms of quadratures.

The independent variable x does not enter explicitely into the equation, hence the
x-translation is a symmetry. The problem is to determine when this equation has a second
symmetry with generating function of the form

ϕ = αp + β, (11)

where p = p1 and α and β are functions of x and y such that {p, ϕ} is a linear combination
of p and ϕ. In what follows, we exclude the trivial particular case when the function f(y)
is linear.

We will use variables x, y and p as a system of coordinates on the surface E ∈ J2(1, 1)
corresponding to the given equation. In these coordinates the total derivative operator has
the form

D =
∂

∂x
+ p

∂

∂y
+ (p + f)

∂

∂p
. (12)

The generating function of a symmetry ϕ(x, y, p) has to satisfy the equation

D2(ϕ)−D(ϕ)− f ′ϕ = 0.

Taking into account relations (11) and (12), we can rewrite the last one as

αyyp2+(2αxy+2αy+βyy)p2+(3αyf+αx+αxx+2βxy)p+(2αxf+βyf+βxx−βx−f ′β) = 0,

which is equivalent to the system of equations

αyy = 0,

2αxy + 2αy + βyy = 0,

3αyf + αx + αxx + 2βxy = 0,

2αxf + βyf + βxx − βx − f ′β = 0.

(13)
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The first equation yields α = γy + δ, where γ and δ are some functions of x. Substi-
tuting this into the second equation, we obtain β = −(γ + γ′)y2 + εy + ζ, where ε and ζ
are again functions of x. Then the third equation is reduced to

3γf = 3(γ + γ′)y − δ′ − δ′′ − 2ε′.

Since the function f(y) was supposed to be non-linear, it follows that γ = 0 and ε =
(d− δ − δ′)/2, where d = const.

Now the last equation of the system (13) takes the form

(εy + ζ)f ′ − ηf = θy + λ (14)

with η = 2δ′+ ε, θ = ε′′− ε′, which is an ordinary differential equation with respect to the
function f(y), where the variable x enters as parameter. Its general solution, under the
assumptions ε 6= 0, η 6= 0, ε 6= η, is given by the formula

f = µ
(
y +

ζ

ε

)η/ε +
θ

ε− η

(
y +

ζ

ε

)
+

θζ − ελ

εη
, (15)

where µ is an arbitrary function of x.
Among all functions (15) we have to choose those which depend only on y and are

nonlinear in y. The former requirement holds if and only if all of the functions µ, ζ/ε, η/ε,
θ/(ε− η), (θζ − ελ)/(εη) are constants. Denoting the constants µ, ζ/ε, η/ε by a, b and c
respectively and taking into account all the relations among functions under consideration,
we arrive at the following expressions:

ε = −k + 1
2

aekx,

ζ = bε,

η = cε,

θ = (k2 − k)ε,

λ = (k2 − k)bε,

where k = 1−c
c+3 (note that c 6= −3 if ε 6= 0). Hence

f(y) = a(y + b)c − 2c + 2
(c + 3)2

y.

Now consider the possibilities previuosly excluded. Either of assumptions η = 0 and η = ε
results in linearity of the function f(y). In the case ε = 0 we obtain a new series of solutions
to equation (14),

f(y) = aeby − 2
b
, a, b ∈ R.

The computations accomplished can be summarized as follows.
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Theorem 6. Among all nonlinear equations of the form y′′ = y′+f(y) only equations
of the two following series:

y′′ = y′ + a(y + b)c − 2c + 2
(c + 3)2

y, a, b, c ∈ R, c 6= −3,(A)

y′′ = y′ + aeby − 2
b
, a, b ∈ R, b 6= 0(B)

possess a two-dimensional algebra of point symmetries. In case (A) a basis of this algebra
may be chosen to consist of functions

ϕ1 = p, ϕ2 = ekx(p− k + 1
2

y)

with k = 1−c
c+3 , in case (B) the two functions

ϕ1 = p, ϕ2 = e−x(p− 2
b
)

can be taken as a basis.

To complete the example, we will carry out the integration procedure for the equation
of series (A) with a = 1, b = 0, c = −2,

y′′ = y′ + y−2 + 2y. (16)

The corresponding algebra of point symmetries is generated by ϕ1 = p and ϕ2 = e3x(p−2y).
We have {ϕ1, ϕ2} = −3ϕ2. The commutator subalgebra G(1) is generated by ϕ2, hence
the basis ϕ1, ϕ2 is written exactly in the order prescribed by the algorithm. The pairing
matrix of symmetries and basic Cartan’s 1-forms is

Ξ =
(

ϕ1 ϕ2

Dϕ1 Dϕ2

)
=

(
p e3x(p− 2y)
q e3x(q + p− 6y)

)
,

where q = p + y−2 + 2y. Its determinant is equal to e3xT , where T = p2 − 6yp + 2yq =
p2 − 4yp + 2y−1 + 4y2. The new basic 1-forms are computed as follows:

(
ω′0
ω′1

)
= Ξ−1

(
ω0

ω1

)
=

e−3x

T

(
e3x(q + p− 6y) e3x(2y − p)

−q p

)(
dy − pdx
dp− qdx

)
,

whence
ω′0 =

1
T

[(2p + y−2 − 4y)dy + (2y − p)dp]− dx,

ω′1 =
1
T

[−e−3x(p + y−2 + 2y)dy + e−3xpdp].

The form ω′0 is closed; its integral is − 1
2 log |T | −x. Instead of this function it is more

convenient to take

h1 = exp(−2
∫

ω′0) = e2x(p2 − 4yp + 2y−1 + 4y2)
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which is also a first integral of the equation.
Now we are to integrate the 1-form ω′1 on the surface Hc1 , defined by h1 = c1 = const.

On this surface
p = 2y ±

√
c1e−2x − 2y−1

and hence

ω′1 =
(−e−3x ∓ 2ye−3x

√
c1e−2x − 2y−1

)
dx± e−3x

√
c1e−2x − 2y−1

dy.

Computation of the integral of this 1-form depends on the sign of the constant c1. For
c1 > 0 we have

h2 =
1
3
e−3x ± ye−2x

c1

√
c1 − 2y−1e2x ± c

−3/2
1 log

∣∣∣
√

c1 − 2y−1e2x +
√

c1√
c1 − 2y−1e2x −√c1

∣∣∣

and for c1 < 0

h2 =
1
3
e−3x ± ye−2x

c1

√
c1 − 2y−1e2x ∓ (−c1)−3/2 arctan

√
2
c1

y−1e2x − 1.

The general solution to equation (16) is thus given by implicit formula h2 = c2 = const.
Graphs of these solutions for all values of c1 and c2 fill the region on the surface E where
the algebra G is transversal to the Cartan’s distribution. The complement of this region
is defined by detΞ = 0, i.e. c1 = 0 or, explicitely, p = 2y ±

√
−2y−1. The latter relation

can be interpreted as an ordinary differential equation of first order whose solutions

y = −1
2
(Ce3x ∓ 1)2/3, C = const,

are singular solutions of equation (16).

Remark 1. The famous MACSYMA system (Symbolics MacIvory, 1989 edition)
cannot solve equation (16).

Remark 2. One could from the very beginning reduce equation (16) to a first order
equation via the standard substitution y′ = z(y) (using translation invariance). However,
this would lead to the Abel’s equation

z
dz

dy
= z + y−2 + 2y, (17)

which is rather difficult to integrate. The reason is that (17) does not inherit the other
symmetry of (16), since the translation does not belong to the commutant subalgebra. It
seems that the simplest way to solve equation (17) consists in passing over to second order
equation (16) (which ipso facto has the translational symmetry), finding another invisible
symmetry of the latter and then integrating it with the help of the two symmetries—taken
in inverse order, according to the structure of the Lie algebra. After doing this, one has
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to filter the obtained two-parametric family of solutions of (16) thus chosing solutions of
(17).

Of course, similar computations can be carried out for arbitrary values of parameters a,
b, and c (see Theorem 6). Integration of equations of type (A) reduces finally to integration
of a differential binomial, and Chebyshev’s theorem implies that solutions are elementary
functions whenever c = − 2

n − 1, where n is integer—otherwise they are expressed through
elliptic integrals. For two specific values of parameter c, c = 2 and c = 3, this equation
was solved by Painlevé [Pa], who, however, gave no hint as to how he did that. Equations
of type (B) have elementary solutions for all a and b.

6. Integration via overdetermination

It is well known that (systems of) partial differential equations (p.d.e.) are very reluctant
towards explicit integration. Even finding one separate analytic solution often should
be considered as a big success. Following the line of our previous argument, here we
propose a method of searching for particular solutions which is in a sense ‘perpendicular’
to the standard procedure of computing invariant, or automodel, solutions. However, the
method is also based on symmetries, and the equation under study should possess enough
symmetries in order that the method be applicable.

The idea is the following. Given a p.d.e. or a system which is not of finite type but
has an ample symmetry algebra, one should find complementary equations in such a way
that the resulting system would have finite type and inherit as many symmetries of the
initial system as are necessary for the integration procedure described in Section 2, i.e. in
quantity equal to the codimension of Cartan’s distribution of the overdetermined system.

Since our aim is only to sketch a certain method, in the subsequent considerations
we will always mean generic situations, assertions which hold on some open sets, or for
almost all values of parameters, etc., without explicitely mentioning that. We hope that
the reader will excuse this liberty.

Let us discuss in more detail a possible way of hunting for particular solutions of
one second order equation imposed on the function u(x, y). In Monge’s notation such an
equation is written as

f(x, y, u, p, q, r, s, t) = 0. (18)

Suppose that we know a 4-dimensional solvable Lie algebra G of symmetries of this equa-
tion. We may try to find another equation of the same kind

g(x, y, u, p, q, r, s, t) = 0 (19)

which is compatible with the first one and admits the same algebra G. Geometrically, the
system (18)-(19) represents a 6-dimensional submanifold of the Monge’s jet space J2(2, 1).
The relevant Cartan’s distribution is given by the set of 1-forms

du− pdx− qdy

dp− rdx− sdy

dq − sdx− tdy

(20)
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so that its restriction to the system is 3-dimensional, which does not meet our needs,
because the solutions we are looking for should be represented by 2-dimensional surfaces.

However, after one prolongation the system will consist of 6 equations so that the
dimension of the corresponding submanifold of J3(2, 1) will be 6. If we choose the system
of coordinates on this submanifold to be x, y, u, p, q, s, then to obtain a basis of the Cartan’s
distribution, we can add the 1-form ds−uxxydx−uxyydy to the previously written set, which
means that the Cartan’s distribution of the prolongated equation is exactly 2-dimensional.

Let us try to run the entire procedure, finding explicitely a 4-parametric family of
solutions for the Monge-Ampère equation

uxxuyy − u2
xy = u2,

or in Monge’s notation,
rt− s2 = u2. (21)

This equation possesses a huge amount of symmetries. Already its algebra of point sym-
metries has dimension 6. Let us take four point symmetries which are most ‘visible’, two
translations with generating functions ϕ1 = p and ϕ2 = q and two scale transformations
with generating functions ϕ3 = xp−yq and ϕ4 = u. The lifts of the corresponding contact
vector fields to the space of 2-jets are

X1 = − ∂

∂x
,

X2 = − ∂

∂y
,

X3 = −x
∂

∂x
+ y

∂

∂y
+ p

∂

∂p
− q

∂

∂q
+ 2r

∂

∂r
− 2t

∂

∂t
,

X4 = u
∂

∂u
+ p

∂

∂p
+ q

∂

∂q
+ r

∂

∂r
+ s

∂

∂s
+ t

∂

∂t
,

and they form a solvable Lie algebra G.
The general second order equation invariant under this algebra is

F (u−2pq, up−2r, u−1s, uq−2t) = 0, (22)

F being an arbitrary function of specified arguments. One may try to determine all equa-
tions (22) compatible with equation (21) in the sense that they have a 4-parametric family
of common solutions. This notion of complete compatibility is equivalent to complete in-
tegrability of the Cartan’s distribution after the first prolongation and can be handled in
the following way.

In the generic situation the system (21)—(22) can be rewritten as

r =
u(u2 + s2)

q2 f(u−2pq, u−1s, u2p−2q−2(u2 + s2))
,

t = u−1q2 f(u−2pq, u−1s, u2p−2q−2(u2 + s2)),
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where f is an arbitrary function of its arguments. These equations should be once differ-
entiated giving some expressions for the third derivatives K = uxxx, L = uxxy, M = uxyy,
N = uyyy in terms of x, y, u, p, q, s. All geometrical objects here and below are assumed to
be defined on the resulting 6-dimensional submanifold in J3(2, 1). We will use variables
x, y, u, p, q and s as coordinates on this manifold, understanding all the other involved
letters as their functions.

The basic vector fields that span the Cartan’s distribution of the prolongated system
are

X =
∂

∂x
+ p

∂

∂u
+ r

∂

∂p
+ s

∂

∂q
+ L

∂

∂s
,

Y =
∂

∂y
+ q

∂

∂u
+ s

∂

∂p
+ t

∂

∂q
+ M

∂

∂s
,

and the integrability condition [X, Y ] = λX + µY is equivalent to

X(M) = Y (L). (23)

This is a first order nonlinear partial differential equation imposed on the function f . Of
course, it is rather complicated (we do not even write it explicitly in terms of f !) and the
problem of finding its general solution is difficult. But every particular solution of this
equation gives rise to a specific auxiliary equation (22) and thus to a 4-parametric family
of solutions to the initial equation (21). One may try various ansatzes for the function f
in order to find a solution of (24). We have tried f = 1 and found out that it just complies
with the integrability condition (24).

Let us execute the integration procedure for the system

r = us2q−2 + u3q−2,

t = u−1q2,
(24)

corresponding to f = 1. We will use the algebra X1, . . . , X4 and the following set of basic
1-forms for the Cartan’s distribution:

ω1 = du− pdx− qdy

ω2 = dp− rdx− sdy

ω3 = dq − sdx− tdy

ω4 = ds− Ldx−Mdy,

where
L = 3q−1s2 − 2u−1ps + q−1u2,

M = 2u−1qs− u−2pq2.

Since the commutator subalgebra of G is spanned by X1 and X2, by theorem 2 we
know that in the new basis of 1-forms ω′1, . . . , ω

′
4, such that ω′i(Xj) = δij , two forms, ω′3

and ω′4, will be closed. A simple calculation yields

ω′3 =
1

2uqs− 2pq2
[qsdu− q2dp + (pq − 2us)dp + uqds]
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and ∫
ω′3 = −1

2
log(us− pq) + log q.

The function h = (us − pq)/q2 is thus a first integral of the system (23). According
to the general scheme, we now have to integrate ω′4 and then, restricting everything to the
mutual level surfaces of the two first integrals, compute the integrals of the two remaining
basic 1-forms. But profiting by the apparent simplicity of function h, we might as well
interrupt the smooth flow of the algorithm here and start it anew in a simpler environment.
Here is what we mean by that.

Existence of the first integral h implies that the system (23) is equivalent to a 1-
parametric family of equations

r = us2q−2 + u3q−2,

s = Cu−1q2 + u−1pq,

t = u−1q2

(25)

for arbitrary C ∈ R. For any specific value of C equation (25) represents a 3-dimensional
submanifold in J2(2, 1) and the corresponding Cartan’s distribution is 2-dimensional, so
that there is no need for prolongation and everything can be done within a 5-dimensional
manifold with coordinates x, y, u, p, q, using the set of 1-forms (20) and only three
symmetries, say X1, X2 and X4. This algebra is commutative, so that all the three 1-
forms of the new recalculated basic set are closed. Their integration gives the following
first integrals:

au

q
+ x = const,

a2u5

5q5
+

aup

q2
+

u

q
− y = const,

a2u4

4q4
+

ap

q
− log q = const,

where a = C−1 (which almost always makes sense!), and after eliminating p and q we
arrive at the explicit formula for a 4-parametric family of solutions to the initial equation
(21):

u =
x + C1

a
exp

[ (x + C1)4

20a2
+

a(y + C2)
x + C1

+ C3

]
.

Remark. One could try to handle the system (23) by first solving its second equation.
This way leads, however, to a rather intricate nonlinear second order o.d.e. which the
authors were not smart enough to cope with. This is yet another confirmation of S.Lie’s
motto

Use symmetries to solve differential equations!
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