
Lecture 1. Basic Systems

1.1. What is an exterior differential system?

An exterior differential system (EDS) is a pair (M, I) where M is a smooth manifold and I ⊂ Ω∗(M)
is a graded ideal in the ring Ω∗(M) of differential forms on M that is closed under exterior differentiation,
i.e., for any φ in I, its exterior derivative dφ also lies in I.

The main interest in an EDS (M, I) centers around the problem of describing the submanifolds f : N →
M for which all the elements of I vanish when pulled back to N , i.e., for which f∗φ = 0 for all φ ∈ I. Such
submanifolds are said to be integral manifolds of I. (The choice of the adjective ‘integral’ will be explained
shortly.)

In practice, most EDS are constructed so that their integral manifolds will be the solutions of some
geometric problem one wants to study. Then the techniques to be described in these lectures can be brought
to bear.

The most common way of specifying an EDS (M, I) is to give a list of generators of I. For φ1, . . . , φs ∈
Ω∗(M), the ‘algebraic’ ideal consisting of elements of the form

φ = γ1 ∧ φ1 + · · ·γs ∧ φs

will be denoted 〈φ1, . . . , φs〉alg while the differential ideal I consisting of elements of the form

φ = γ1 ∧ φ1 + · · ·γs ∧ φs + β1 ∧ dφ1 + · · ·βs ∧ dφs

will be denoted 〈φ1, . . . , φs〉.

Exercise 1.1: Show that I = 〈φ1, . . . , φs〉 really is a differentially closed ideal in Ω∗(M). Show also that a
submanifold f : N → M is an integral manifold of I if and only if f∗φσ = 0 for σ = 1, . . . , s.

The p-th graded piece of I, i.e., I ∩ Ωp(M), will be denoted Ip. For any x ∈ M , the evaluation
of φ ∈ Ωp(M) at x will be denoted φx and is an element of Ωp

x(M) = Λp(T ∗
x M). The symbols Ix and Ip

x

will be used for the corresponding concepts.

Exercise 1.2: Make a list of the possible ideals in Λ∗(V ) up to isomorphism, where V is a vector space
over R of dimension at most 4. (Keep this list handy. We’ll come back to it.)

1.2. Differential equations reformulated as EDSs

Élie Cartan developed the theory of exterior differential systems as a coordinate-free way to describe and
study partial differential equations. Before I describe the general relationship, let’s consider some examples:

Example 1.1: An Ordinary Differential Equation. Consider the system of ordinary differential equations

y′ = F (x, y, z)
z′ = G(x, y, z)

where F and G are smooth functions on some domain M ⊂ R
3. This can be modeled by the EDS (M, I)

where
I = 〈 dy − F (x, y, z) dx, dz − G(x, y, z) dx 〉.

It’s clear that the 1-dimensional integral manifolds of I are just the integral curves of the vector field

X =
∂

∂x
+ F (x, y, z)

∂

∂y
+ G(x, y, z)

∂

∂z
.
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Example 1.2: A Pair of Partial Differential Equations. Consider the system of partial differential
equations

zx = F (x, y, z)
zy = G(x, y, z)

where F and G are smooth functions on some domain M ⊂ R
3. This can be modeled by the EDS (M, I)

where
I = 〈 dz − F (x, y, z) dx− G(x, y, z) dy 〉.

On any 2-dimensional integral manifold N2 ⊂ M of I, the differentials dx and dy must be linearly indepen-
dent (Why?). Thus, N can be locally represented as a graph

(
x, y, u(x, y)

)
The 1-form

dz−F (x, y, z) dx−G(x, y, z) dy

vanishes when pulled back to such a graph if and only if the function u satisfies the differential equations

ux(x, y) = F
(
x, y, u(x, y)

)

uy(x, y) = G
(
x, y, u(x, y)

)

for all (x, y) in the domain of u.

Exercise 1.3: Check that a surface N ⊂ M is an integral manifold of I if and only if each of the vector
fields

X =
∂

∂x
+ F (x, y, z)

∂

∂z
and Y =

∂

∂y
+ G(x, y, z)

∂

∂z

is tangent to N at every point of N . In other words, N must be a union of integral curves of X and also a
union of integral curves of Y . By considering the special case F = y and G = −x, show that there need not
be any 2-dimensional integral manifolds of I at all.

Example 1.3: Complex Curves in C
2. Consider M = C

2, with coordinates z = x + i y and w = u + i v.
Let I = 〈φ1, φ2〉 where φ1 and φ2 are the real and imaginary parts, respectively, of

dz ∧ dw = dx ∧ du− dy ∧ dv + i (dx ∧ dv + dy ∧ du).

Since I1 = (0), any (real) curve in C
2 is an integral curve of I. A (real) surface N ⊂ C

2 is an integral
manifold of I if and only if it is a complex curve. If dx and dy are linearly independent on N , then locally N
can be written as a graph

(
x, y, u(x, y), v(x, y)

)
where u and v satisfy the Cauchy-Riemann equations:

ux − vy = uy + vx = 0. Thus, (M, I) provides a model for the Cauchy-Riemann equations.

In fact, any ‘reasonable’ system of partial differential equations can be described by an exterior differ-
ential system. For concreteness, let’s just stick with the first order case. Suppose, for example, that you
have a system of equations of the form

F ρ
(
x, z,

∂z
∂x

)
= 0, ρ = 1, . . . , r,

where x = (x1, . . . , xn) are the independent variables, z = (z1, . . . , zs) are the dependent variables, and ∂z
∂x

is the Jacobian matrix of z with respect to x. The hypotheses that I want to place on the functions F ρ is
that they are smooth on some domain D ⊂ R

n × R
s × R

ns and that, at every point (x, z, p) ∈ D at which
all of the F ρ vanish, one can smoothly solve the above equations for r of the p-coordinates in terms of x, z,
and the ns−r remaining p-coordinates. If we then let Mn+s+ns−r ⊂ D be the common zero locus of the F ρ,
set

θα = dzα − pα
i dxi

and let I = 〈 θ1, . . . , θs〉. Then any n-dimensional integral manifold N ⊂ M of I on which the {dxi}1≤i≤n

are linearly independent is locally the graph of a solution to the original system of first order PDE.
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Obviously, one can ‘encode’ higher order PDE as well, by simply regarding the intermediate partial
derivatives as dependent variables in their own right, constrained by the obvious PDE needed to make them
be the partials of the lower order partials. For example, in the classical literature, one frequently sees a
second order scalar PDE

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0

written in the standard classical notation

0 = F (x, y, u, p, q, r, s, t)
0 = du − p dx− q dy

0 = dp − r dx − s dy

0 = dq − s dx − t dy

We would interpret this to mean that the equation F = 0 defines a smooth hypersurface M7 in xyupqrst-
space and the differential equation is then modeled by the differential ideal I ⊂ Ω∗(M) given by

I = 〈 du−p dx−q dy, dp−r dx−s dy, dq−s dx−t dy 〉.

The assumption that the PDE be ‘reasonable’ is then that not all of the partials (Fr, Fs, Ft) vanish along
the locus F = 0, so that x, y, u, p, q, and two of r, s, and t can be taken as local coordinates on M .

Exercise 1.4: Show that a second order scalar equation of the form

A(x, y, u, p, q) r + 2B(x, y, u, p, q) s + C(x, y, u, p, q) t

+D(x, y, u, p, q) (rt− s2) + E(x, y, u, p, q) = 0

(in the classical notation described above) can be modeled on xyupq-space (i.e., M = R
5) via the ideal I

generated by θ = du−p dx−q dy together with the 2-form

Υ = Adp ∧ dy + B (dq ∧ dy−dp ∧ dx) − C dq ∧ dx + D dp ∧ dq + E dx ∧ dy.

(Equations of this kind are known as Monge-Ampere equations. They come up very frequently in differential
geometry.)

Example 1.4: Linear Weingarten Surfaces. This example assumes that you know some differential
geometry. Let M5 = R

3 × S2 and let x : M → R
3 and u : M → S

2 ⊂ R
3 be the projections on the two

factors. Notice that the isometry group G of Euclidean 3-space acts on M in a natural way, with translations
acting only on the first factor and rotations acting ‘diagonally’ on the two factors together.

Consider the 1-form θ = u · dx, which is G-invariant. If ι : N ↪→ R
3 is an oriented surface, then the

lifting f : N → M given by f(p) =
(
ι(p), ν(p)

)
where ν(p) ∈ S2 is the oriented unit normal to the immersion ι

at p, is an integral manifold of θ. (Why?) Conversely, any integral 2-manifold f : N → M of θ for which the
projection x◦f : N → R

3 is an immersion is such a lift of a canonically oriented surface ι : N ↪→ R
3.

Exercise 1.5: Prove this last statement.

In the classical literature, the elements of M are called the (first order) contact elements of (oriented)
surfaces in R

3. (The adjective ‘contact’ refers to the image from mechanics of two oriented surfaces making
contact to first order at a point if and only if they pass through the point in question and have the same
unit normal there.)

It is not hard to show that any G-invariant 1-form on M is a constant multiple of θ. However, there
are several G-invariant 2-forms (in addition to dθ). For example, the 2-forms

Υ0 = 1
2u · (dx× dx), Υ1 = 1

2u · (du× dx), Υ2 = 1
2u · (du× du).

are all manifestly G-invariant.
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Exercise 1.6: For any oriented surface ι : N ↪→ R
3 with corresponding contact lifting f : N → M , show

that
f∗(Υ0) = dA, f∗(Υ1) = −H dA, f∗(Υ2) = K dA.

where dA is the induced area form of the immersion ι and H and K are its mean and Gauss curvatures,
respectively. Moreover, an integral 2-manifold of θ is a contact lifting if and only if Υ0 is nonvanishing on it.

From this exercise, it follows, for example, that the contact liftings of minimal surfaces in R
3 are integral

manifolds of I = 〈θ, Υ1〉. As another example, it follows that the surfaces with Gauss curvature K = −1
are integral manifolds of the ideal I = 〈θ, Υ2 + Υ0〉. In fact, any constant coefficient linear equation of the
form a K+b H +c = 0 is modeled by I = 〈θ, a Υ2−b Υ1 +c Υ0〉. Such equations are called linear Weingarten
equations in the literature.

Exercise 1.7: Fix a constant r and consider the mapping Φr : M → M satisfying Φr(x, u) = (x + ru, u).
Show that Φ∗θ = θ and interpret what this means with regard to the integral surfaces of θ. Compute Φ∗Υi

for i = 0, 1, 2 and interpret this in terms of surface theory. In particular, what does this say about the
relation between surfaces with K = +1 and surfaces with H = ±1

2
?

Exercise 1.8: Show that the cone z2 = x2 + y2 is the projection to R
3 of an embedded smooth cylinder

in M that is an integral manifold of 〈θ, Υ2〉. Show that the double tractrix (or pseudosphere), a rotationally
invariant singular ‘surface’ with Gauss curvature K = −1 at its smooth points, is the projection to R

3 of an
embedded cylinder in M that is an integral manifold of 〈θ, Υ2+Υ0〉.

1.3. The Frobenius Theorem

Of course, reformulating a system of PDE as an EDS might not necessarily be a useful thing to do. It
will be useful if there are techniques available to study the integral manifolds of an EDS that can shed light
on the set of integral manifolds and that are not easily applicable to the original PDE system. The main
techniques of this type will be discussed in lectures later in the week, but there are a few techniques that
are available now.

The first of these is when the ideal I is algebraically as simple as possible.

Theorem 1: (The Frobenius Theorem) Let (M, I) be an EDS with the property that I = 〈I1〉alg and
so that dimI1

p is a constant r indepdendent of p ∈ M . Then for each point p ∈ M there is a coordinate
system x = (x1, . . . , xn+r) on a p-neighborhood U ⊂ M so that

IU = 〈dxn+1, . . . , dxn+r〉.

In other words, if I is algebraically generated by 1-forms and has constant ‘rank’, then I is locally
equivalent to the obvious ‘flat’ model. In such a case, the n-dimensional integral manifolds of I are described
locally in the coordinate system x as ‘slices’ of the form

xn+1 = c1, xn+2 = c2, . . . , xn+r = cr .

In particular, each connected integral manifold of I lies in a unique maximal integral manifold, which has
dimension n. Moreover, these maximal integral manifolds foliate the ambient manifold M .

If you look back at Example 1.2, you’ll notice that I is generated algebraically by I1 if and only if it is
generated algebraically by

ζ = dz − F (x, y, z) dx− G(x, y, z) dy,

and this, in turn, is true if and only if ζ∧dζ = 0. (Why?) Now

ζ ∧ dζ =
(
Fy − Gx + G Fz − F Gz

)
dx ∧ dy ∧ dz.

Thus, by the Frobenius Theorem, if the two functions F and G satisfy the PDE Fy −Gx +G Fz −F Gz = 0,
then for every point (x0, y0, z0) ∈ M , there is a function u defined on an open neighborhood of (x0, y0) ∈ R

2

so that u(x0, y0) = z0 and so that u satisfies the equations ux = F (x, y, u) and uy = G(x, y, u).
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Exercise 1.9: State and prove a converse to this last statement.

Note, by the way, that it may not be easy to actually find the ‘flat’ coordinates x for a given I that
satisfies the Frobenius condition.

Exercise 1.10: Suppose that u and v are functions of x and y that satisfy the equations

ux − vy = eu sin v, uy + vx = eu cos v.

Show that uxx +uyy = e2u and that vxx +vyy = 0. Conversely, show that if u(x, y) satisfies uxx +uyy = e2u,
then there exists a one parameter family of functions v so that the pair (u, v) satisfies the displayed equations.
Prove a similar existence theorem for a given arbitrary solution of vxx + vyy = 0. (This peculiar system is
an elementary example of what is known as a Bäcklund transformation. More on this later.)

1.4. The Pfaff Theorem

There is another case (or rather, sequence of cases) in which there is a simple local normal form.

Theorem 2: (The Pfaff Theorem) Let (M, I) be an EDS with the property that I = 〈ω〉 for some
nonvanishing 1-form ω. Let r ≥ 0 be the smallest integer for which ω∧(dω)r+1 ≡ 0. Then for each
point p ∈ M at which ω∧(dω)r is nonzero, there is a coordinate system x = (x1, . . . , xn+2r+1) on a p-
neighborhood U ⊂ M so that IU = 〈dxn+1〉 if r = 0 and, if r > 0, then

IU = 〈 dxn+1 − xn+2 dxn+3 − xn+4 dxn+5 − · · ·xn+2r dxn+2r+1 〉.

Note that the case where r = 0 is really a special case of the Frobenius Theorem. Points p ∈ M for
which ω∧(dω)r is nonzero are known as the regular points of the ideal I. The regular points are an open set
in M .

Exercise 1.11: Explain why the integer r is well-defined, i.e, if I = 〈ω〉 = 〈η〉, then you will get the same
integer r if you use η as the generator and you will get the same notion of regular points.

In fact, the Pfaff Theorem has a slightly stronger form. It turns out that the maximum dimension of
an integral manifold of I that lies in the regular set is n+r. Moreover, if Nn+r ⊂ M is such a maximal
dimensional integral manifold and N is embedded, then for every p ∈ N , one can choose the coordinates x
so that N ∩ U is described by the equations

xn+1 = xn+2 = xn+4 = · · · = xn+2r = 0.

Any integral manifold in U near this one on which the n+r functions x1, . . . , xn, xn+3, xn+5, . . . , xn+2r+1

form a coordinate system can be described by equations of the form

xn+1 = f(xn+3 , xn+5, . . . , xn+2r+1),

xn+2k =
∂f

∂yk
(xn+3, xn+5, . . . , xn+2r+1), 1 ≤ k ≤ r

for some suitable function f(y1 , . . . , yr). Thus, one can informally say that the integral manifolds of maximal
dimension depend on one arbitrary function of r variables.
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Exercise 1.12: Consider the contact ideal
(
R

3×S2 , 〈u·dx〉
)

introduced in Example 1.4. Show that one can
introduce local coordinates (x, y, z, p, q) in a neighborhood of any point of M5 = R

3×S2 so that

〈u·dx〉 = 〈 dz−p dx−q dy 〉

and conclude that θ = u·dx satisfies θ∧(dθ)2 �= 0. Explain how this shows that each of the ideals I =
〈θ, a Υ2 − b Υ1 + c Υ0〉 is locally equivalent to the ideal associated to a Monge-Ampere equation, as defined
in Exercise 1.4.

1.5. Jørgen’s Theorem

I want to conclude this lecture by giving one example of the advantage one gets by looking at even a
very classical problem from the point of view of an exterior differential system.

Consider the Monge-Ampere equation

zxx zyy − zxy
2 = 1.

It is easy to see that this has solutions of the form

z = u(x, y) = a x2 + 2b xy + c y2 + d x + e y + f

for any constants a, . . . , f satisfying 4(ac − b2) = 1. According to a theorem of Jørgen, these are the only
solutions whose domain is the entire xy-plane. I now want to give a proof of this theorem.

As in Exercise 1.4, every (local) solution z = u(x, y) of this equation gives rise to an integral manifold
of an ideal I on xyupq-space where

I = 〈 du− p dx− q dy, dp ∧ dq − dx ∧ dy 〉
= 〈 du− p dx− q dy, dp ∧ dx + dq ∧ dy, dp ∧dq − dx ∧dy 〉alg.

Now, consider the mapping Φ : R
5 → R

5 defined by

Φ(x, y, u, p, q) = (x, q, u−qy, p,−y).

Then Φ is a smooth diffeomorphism of R
5 with itself and it is easy to check that

Φ∗(I) = 〈 du− p dx− q dy, dp ∧ dy + dx ∧ dq 〉

However, this latter ideal is the ideal associated to uxx + uyy = 0! In other words, ‘solutions’ to the
Monge-Ampere equation are transformed into ‘solutions’ of Laplace’s equation by this mapping.

The reason for the scare quotes around the word ‘solution’ is that, while we know that the integral
surfaces of the two ideals correspond under Φ, not all of the integral surfaces actually represent solutions,
since, for example, some of the integral surfaces of I won’t even have dx and dy be linearly independent,
and these must somehow be taken into account.

Still, the close contact with the harmonic equation and thence the Cauchy-Riemann equations suggests
an argument: Namely, the integral surface N ⊂ R

5 of a solution to the Monge-Ampere equation must satisfy

0 = dp ∧ dx + dq ∧ dy + i(dp ∧ dq − dx ∧ dy) = (dp + i dy) ∧ (dx + i dq).

Thus the projection of N into xypq-space is a complex curve when p+ i y and x+ i q are regarded as complex
coordinates on this R

4. In particular, N can be regarded as a complex curve for which each of p+i y and
x+i q are holomorphic functions.

Since dx and dy are linearly independent on N , it follows that neither of the 1-forms dp+i dy nor dq−i dx
can vanish on N . Thus, there exists a holomorphic function λ on N so that

dp + i dy = λ (dx + i dq).
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Because dx∧dy is nonvanishing on N , the real part of λ can never vanish.
Suppose that the real part of λ is always positive. (I’ll leave the other case to you.) Then |λ + 1|2 >

|λ − 1|2, which implies that

|λ + 1|2(dx2 + dq2) > |λ − 1|2(dx2 + dq2) > 0

and, by the above relation, this is

|(dp + i dy) + (dx + i dq)|2 > |(dp + i dy) − (dx + i dq)|2

or, more simply,
d(p+x)2 + d(q+y)2 > d(p−x)2 + d(q−y)2.

In particular, the left hand quadratic form is greater than the average of the left and right hand quadratic
forms, i.e.,

d(p+x)2 + d(q+y)2 > dp2 + dx2 + dq2 + dy2 > dx2 + dy2.

If the solution is defined on the whole plane, then the right hand quadratic form is complete on N , so the
left hand quadratic form must be complete on N also. It follows from this that the holomorphic map

(p+x) + i(y+q) : N → C

is a covering map and hence must be a biholomorphism, so that N is equivalent to C as a Riemann surface.
By Liouville’s Theorem, it now follows that λ (which takes values in the right half plane) must be constant.
The constancy of λ implies that dp and dq are constant linear combinations of dx and dy, which forces u to
be a quadratic function of x and y. QED.

Exercise 1.13: Is it necessarily true that any entire solution of

uxx uyy − uxy
2 = −1

must be a quadratic function of x and y? Prove or give a counterexample.
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