
Lecture 2. Applications 1: Scalar first order PDE, Lie Groups

2.1. The contact system

For any vector space V of dimension N over R, let Gn(V ) denote the set of n-dimensional subspaces
of V . When 0 < n < N (which I will assume from now on), the set Gn(V ) can naturally be regarded as
a smooth manifold of dimension n(N − n). To see this, set s = N − n and, for any E ∈ Gn(V ) choose
linear coordinates (x, u) = (x1, . . . , xn; u1, . . . , us) so that the xi restrict to E to be linearly independent.
Let Gn(V, x) ⊂ Gn(V ) denote the set of Ẽ ∈ Gn(V ) to which the xi restrict to be linearly independent.
Then there are unique numbers pa

i (Ẽ) so that the defining equations of Ẽ are

ua − pa
i (Ẽ)xi = 0, 1 ≤ a ≤ s.

Give Gn(V ) the manifold structure so that the maps (pa
i ) : Gn(V, x) → R

ns are smooth coordinate charts.

Exercise 2.1: Check that this does work, i.e., that these charts are smooth on overlaps.

Now let X be a manifold of dimension N . The set of n-dimensional subspaces of the tangent spaces TxX
as x varies over X will be denoted by Gn(TX). Any E ∈ Gn(TX) is an n-dimensional subspace E ⊂ Tπ(E)X
for a unique π(E) ∈ X. Obviously, the fiber of the map π : Gn(TX) → X over the point x ∈ X is Gn(TxX).
It should not be surprising, then, that there is a natural manifold structure on Gn(TX) for which π is a
submersion and for which Gn(TX) has dimension n+s+ns.

In fact, consider a coordinate chart (x, u) : U → R
n × R

s defined on some open set U ⊂ X, where x =
(x1, . . . , xn) and u = (u1, . . . , us). Let Gn(TU, x) ⊂ Gn(TU) denote the set of n-planes to which the
differentials dxi restrict to be independent. Then each E ∈ Gn(TU, x) satisfies a set of linear relations of
the form

dua − pa
i (E) dxi = 0, 1 ≤ a ≤ s.

for some unique real numbers pa
i (E). Set p = (pa

i ) : Gn(TU, x) → R
ns. Then the map

(x, u, p) : Gn(TU, x) → R
n × R

s × R
ns

embedds Gn(TU, x) as an open subset of R
n+s+ns. Give Gn(TX) the manifold structure for which these

maps are smooth coordinate charts.

Exercise 2.2: Check that this does work, i.e., that these charts are smooth on overlaps.

The coordinate chart
(
(x, u, p), Gn(TU, x)

)
will be called the canonical extension of the coordinate

chart
(
(x, u), U

)
.

Any diffeomorphism φ : X → Y lifts to a diffeomorphism φ(1) : Gn(TX) → Gn(TY ) defined by the rule

φ(1)(E) = dφ(E) ⊂ T
φ
(
π(E)

)Y.

Now Gn(TX) comes endowed with a canonical exterior system C called the contact system. Abstractly,
it can be defined as follows: There is a canonical (n+ns)-plane field C ⊂ TGn(TX) defined by

CE = dπ−1(E) ⊂ TEGn(TX).

Then C is the ideal generated by the set of 1-forms on Gn(TX) that vanish on C. From the canonical nature
of the deifinition, it’s clear that for any diffeomorphism φ : X → Y , the corresponding lift φ(1) : Gn(TX) →
Gn(TY ) will identify the two contact systems.

Now, why is C called a ‘contact’ system? Consider an immersion f : N → X where N has dimension n.
This has a canonical ‘tangential’ lift f(1) : N → Gn(TX) defined by

f(1)(p) = df(TpN) ⊂ Tf(p)X.

Almost by construction, df(1)(TpN) ⊂ Cf(1)(p), so that f(1) : N → Gn(TX) is an integral manifold of C.
Conversely, if F : Nn → Gn(TX) is an integral manifold of C that is transverse to the fibration π : Gn(TX) →
X, i.e., f = π ◦ F : Nn → M is an immersion, then F = f(1).
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Exercise 2.3: Prove this last statement.

Thus, the contact system C essentially distinguishes the tangential lifts of immersions of n-manifolds
into X from arbitrary immersions of n-manifolds into X. As for the adjective ‘contact’, it comes from
the interpretation that two different immersions f, g : N → X will satisfy f(1)(p) = g(1)(p) if and only
if f(p) = g(p) and the two image submanifolds share the same tangent n-plane at p. Intuitively, the two
image submanifolds f(N) and g(N) have ‘first order contact’ at p.

Exercise 2.4: (Important!) Show that, in canonically extended coordinates (x, u, p) on Gn(TX, x),

CGn(TX,x) = 〈 du1 − p1
i dxi, . . . , dus − ps

i dxi 〉,
I.e., C is locally generated by the 1-forms θa = dua − pa

i dxi for 1 ≤ a ≤ s in any canonically extended
coordinate system.

As a consequence of the previous exercise, we see that the integral manifolds of C in Gn(TX, x) to
which x restricts to be a coordinate system are described by equations of the form

ua = fa(x1, . . . , xn), pa
i =

∂fa

∂xi
(x1, . . . , xn)

for some differentiable functions fa on an appropriate domain in R
n.

Once the construction of the contact system
(
Gn(TX), C

)
is in place, it can be used to construct other

canonical systems and manifolds. For example, Let X have dimension n and U have dimension s. Let
J1(X, U) ⊂ Gn

(
T (X×U)

)
denote the open (dense) set consisting of the n-planes E ⊂ T(x,u)X×U that are

transverse to the subspace 0 ⊕ TuU ⊂ T(x,u)X×U . The graph (id, f) : X → X×U of any smooth map f :
X → U then has the property that j1f = (id, f)(1) lifts X into J1(X, U). In fact, two maps f, g : X → U
satisfy j1f(p) = j1g(p) if and only if f and g have the same 1-jet at p. Thus, J1(X, U) is canonically
identified with the space of 1-jets of mappings of X into U . The contact system then restricts to J1(X, U)
to be the usual contact system defined in the theory of jets.

If one chooses a submanifold M ⊂ Gn(TX) and lets I be the differential ideal on M generated by the
pullbacks to M of elements of C, then the integral manifolds of (M, I) can be thought of as representing the
n-dimensional submanifolds of X whose tangent planes lie in M . In other words, M can be thought of as a
system of first order partial differential equations for submanifolds of X. As we will see, this is a very useful
point of view.

Exercise 2.5: Let X4 be an almost complex 4-manifold and let M ⊂ G2(TX) be the set of 2-planes that
are invariant under complex multiplication. Show that M has (real) dimension 6 and describe the fibers of
the projection M → X. What can you say about the surfaces in X whose tangential lifts lie in M?

2.2. The method of characteristics

I now want to apply some of these ideas to the classical problem of solving a single, scalar first order
PDE

F
(
x1, . . . , xn, u, ∂u

∂x1 , . . . , ∂u
∂x1

)
= 0.

As explained before, I am going to regard this as an exterior differential system as follows: Using the standard
coordinates x = (x1, . . . , xn) on R

n and u = (u) on R, the canonical extended coordinates on J1(Rn, R) =
Gn

(
T (Rn×R), x

)
become (x, u, p) where p = (p1, . . . , pn). The equation

F (x1, . . . , xn, u, p1, . . . , pn) = 0

then defines a subset M ⊂ J1(Rn, R). I am going to suppose that F is smooth and that not all of the
partials ∂F/∂pi vanish at any single point of M . By the implicit function theorem, it follows then that M
is a smooth manifold of dimension 2n and that the projection (x, u) : M → R

n×R is a smooth submersion.
Let I be the exterior differential system on M generated by the contact 1-form

θ = du− pi dxi.

Note that, on M , the 1-forms dxi, du, dpi are not linearly independent (there are too many of them), but
satisfy a single linear relation

0 = dF = ∂F
∂xi dxi + ∂F

∂u du + ∂F
∂pi

dpi .

Of course, θ∧(dθ)n = 0, but θ∧(dθ)n−1 is nowhere vanishing.
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Exercise 2.6: Prove this last statement.

By the Pfaff theorem, it follows that every point in M has a neighborhood U on which there exist
coordinates (z, y1, . . . , yn−1, v, q1, . . . , qn−1) so that

〈θ〉 = 〈 dv−q1 dy1 − q2 dy2− · · ·−qn−1 dyn−1 〉.

I.e., there is a nonvanishing function µ on U so that

θ = µ
(
dv−q1 dy1 − q2 dy2− · · ·−qn−1 dyn−1

)
.

Notice what this says about the vector field Z = ∂
∂z . Not only does it satisfy θ(Z) = 0, but it also satisfies

Z dθ = dµ(Z) θ.

Moreover, up to a multiple, Z is the only vector field that satisfies θ(Z) = 0 and Z dθ ≡ 0 mod θ.

Exercise 2.7: Prove this last statement. Moreover, show that the vector field

Z =
∂F

∂pi

∂

∂xi
+ pi

∂F

∂pi

∂

∂u
−

(
∂F

∂xi
+ pi

∂F

∂u

)
∂

∂pi

defined on J1(Rn, R) is tangent to the level sets of F (and M = F−1(0) in particular), satisfies θ(Z) = 0,
and satisfies Z dθ ≡ 0 mod {θ, dF }. Conclude that this Z is, up to a multiple, equal to the Z described
above in Pfaff coordinates on M . This vector field is known as the Cauchy characteristic vector field of the
function F .

A solution to the above equation is then represented by a function f : R
n → R so that N = j1f(Rn) lies

in M . In other words, j1f : R
n → M is an integral manifold of I. Now, an n-dimensional integral manifolds

of I is locally described in some Pfaff normal coordinates as above in the form

v = g(y1 , . . . , gn−1), qi =
∂g

∂yi
(y1 , . . . , gn−1)

for a suitable function g on a domain in R
n−1. In particular, such an integral manifold is always tangent to

the Cauchy characteristic vector field.
This gives a prescription for solving a given initial value problem for the above partial differential

equation: Use initial data for the equation to find an (n−1)-dimensional integral manifold P n−1 ⊂ M of I
that is transverse to the Cauchy characteristic vector field Z. Then construct an n-dimensional integral
manifold of I by taking the union of the integral curves of Z that pass through P .

This method of solving a single scalar PDE via ordinary differential equations (i.e., integrating the flow
of a vector field) is known as the method of characteristics. For some explicit examples, consult pp. 25–27
of the EDS notes.

2.3. Maps into Lie groups – existence and uniqueness

Let G be a Lie group with Lie algebra g = TeG, and let η be its canonical left-invariant 1-form. Thus, η
is a 1-form on G with values in g that satisfies the conditions that, first ηe : TeG = g → g is the identity,
and, second, that η is left invariant, i.e., L∗

a(η) = η for all a ∈ G, where La : G → G is left multiplication
by a.

3



Exercise 2.8: Show that if G is a matrix group, with g : G → Mn(R) the inclusion into the n-by-n matrices,
then

η = g−1 dg.

It is well-known (and easy to prove) that η satisfies the Maurer-Cartan equation

dη = −1
2 [η, η].

(In the matrix case, this is equivalent to the perhaps-more-familiar equation dη = −η∧η.)
There are many cases in differential geometry where a geometric problem can be reduced to the following

problem: Suppose given a manifoldN and a g-valued 1-form γ on N that satisfies the Maurer-Cartan equation
dγ = −1

2 [γ, γ]. Prove that there exists a smooth map g : N → G so that γ = g∗(η).
The fundamental result concerning this problem is due to Elie Cartan and is the foundation of the

method of the moving frame:

Theorem 3: (Maurer-Cartan) If N is connected and simply connected and γ is a smooth g-valued 1-form
on N that satisfies dγ = −1

2 [γ, γ], then there exists a smooth map g : N → G, unique up to composition
with a constant left translation, so that g∗η = γ.

I want to sketch the proof as an application of the Frobenius theorem. Here are the ideas: Let M = N×G
and consider the g-valued 1-form

θ = η − γ.

It’s easy to compute that
dθ = −1

2 [θ, θ] − [θ, γ].

In particular, writing θ = θ1 x1 + · · ·+ θs xs where x1, . . . , xs is a basis of g, the differential ideal

I = 〈 θ1, . . . , θs 〉

satisfies I = 〈 θ1 , . . . , θs 〉alg. Moreover, the θa are manifestly linearly independent since they restrict to each
fiber {n}×G to be linearly independent. Thus, the hypotheses of the Frobenius theorem are satisfied, and M
is foliated by maximal connected integral manifolds of I, each of which can be shown to project onto the
first factor N to be a covering map.

Exercise 2.9: Prove this. (You will need to use the fact that the foliation is invariant under the maps id×La :
N×G → N×G.)

Since N is connected and simply connected, each integral leaf projects diffeomorphically onto N and
hence is the graph of a map g : N → G. This g has the desired property. QED

Exercise 2.10: Use Cartan’s Theorem to prove that for every Lie algebra g, there is, up to isomorphism,
at most one connected and simply connected Lie group G with Lie algebra g. (Such a Lie group does exist
for every Lie algebra, but this is proved by other techniques.) Hint: If G1 and G2 satisfy these hypotheses,
consider the map g : G1 → G2 that satisfies g∗η2 = η1 and g(e1) = e2.

2.4. The Gauss and Codazzi equations

As another typical application of the Frobenius Theorem, I want to consider one of the fundamental
theorems of surface theory in Euclidean space.

Let x : Σ → R
3 be an immersion of an oriented surface Σ and let u : Σ → S2 be its Gauss map. In

particular u · dx = 0. The two quadratic forms

I = dx · dx , II = − du · dx

are known as the first and second fundamental forms of the oriented immersion x.
It is evident that if y = Ax+b where A lies in O(3) and b lies in R

3, then y will be an immersion with the
same first and second fundamental forms. (NB. The Gauss map of y will be v = det(A)Au = ±Au.) One of
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the fundamental results of surface theory is a sort of converse to this statement, namely that if x, y : Σ → R
3

have the same first and second fundamental forms, then they differ by an ambient isometry. (Note that the
first or second fundamental form alone is not enough to determine the immersion up to rigid motion.) This
is known as Bonnet’s Theorem, although it appears to have been accepted as true long before Bonnet’s proof
appeared.

The standard argument for Bonnet’s Theorem goes as follows: Let π : F → Σ be the oriented orthonor-
mal frame bundle of Σ endowed with the metric I. Elements of F consist of triples (p, v1, v2) where (v1, v2) is
an oriented, I-orthonormal basis of TpΣ and π(p, v1, v2) = p. There are unique 1-forms on F , say ω1, ω2, ω12

so that
dπ(w) = v1 ω1(w) + v2 ω2(w)

for all w ∈ T(p,v1,v2)F and so that

dω1 = −ω12 ∧ ω2 , dω2 = ω12 ∧ω1 .

Then
π∗I = ω1

2 + ω2
2, π∗II = h11 ω1

2 + 2h12 ω1ω2 + h22 ω2
2,

for some functions h11, h12, and h22. Defining ω31 = h11 ω1 + h12 ω2 and ω32 = h12 ω1 + h22 ω2, it is not
difficult to see that the R

3-valued functions x, e1 = x′(v1), e2 = x′(v2), and e3 = e1×e2 must satisfy the
matrix equation

d

[
1 0 0 0
x e1 e2 e3

]
=

[
1 0 0 0
x e1 e2 e3

]⎛
⎜⎝

0 0 0 0
ω1 0 ω12 −ω31

ω2 −ω12 0 −ω32

0 ω31 ω32 0

⎞
⎟⎠ .

Now, the matrix

γ =

⎛
⎜⎝

0 0 0 0
ω1 0 ω12 −ω31

ω2 −ω12 0 −ω32

0 ω31 ω32 0

⎞
⎟⎠

takes values in the Lie algebra of the group G ⊂ SL(4, R) of matrices of the form

[
1 0
b A

]
, b ∈ R

3, A ∈ SO(3),

while the mapping g : F → G defined by

g =
[

1 0 0 0
x e1 e2 e3

]

clearly satisfies g−1 dg = γ. Thus, by the uniqueness in Cartan’s Theorem, the map g is uniquely determined
up to left multiplication by a constant in G.

Exercise 2.11: Explain why this implies Bonnet’s Theorem as it was stated.

Perhaps more interesting is the application of the existence part of Cartan’s Theorem. Given any
pair of quadratic forms

(
I, II

)
on a surface Σ with I being positive definite, the construction of F and the

accompanying forms ω1, ω2, ω12, ω31, ω32 and thence γ can obviously be carried out. However, it won’t
necessarily be true that dγ = −γ∧γ. In fact,

dγ + γ ∧ γ =

⎛
⎜⎝

0 0 0 0
0 0 Ω12 −Ω31

0 −Ω12 0 −Ω32

0 Ω31 Ω32 0

⎞
⎟⎠
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where, for example,
Ω12 =

(
K − h11h22 + h12

2
)
ω1 ∧ ω2

where K is the Gauss curvature of the metric I. Thus, a necessary condition for the pair
(
I, II

)
to come from

an immersion is that the Gauss equation hold, i.e.,

detI II = K.

The other two expressions Ω31 = h1 ω1∧ω2 and Ω32 = h2 ω1∧ω2 are such that there is a well-defined 1-form
η on Σ so that π∗η = h1 ω1 + h2 ω2. The mapping δI from quadratic forms to 1-forms that II 
→ η defines is
a first order linear differential operator. Thus, another necessary condition that the pair

(
I, II

)
come from

an immersion is that the Codazzi equation hold, i.e.,

δI(II) = 0.

By Cartan’s Theorem, if a pair
(
I, II

)
on a surface Σ satisfy the Gauss and Codazzi equations, then, at

least locally, there will exist an immersion x : Σ → R
3 with

(
I, II

)
as its first and second fundamental forms.

Exercise 2.12: Show that this immersion can be defined on all of Σ if Σ is simply connected. (Be careful:
Just because Σ is simply connected, it does not follow that F is simply connected. How do you deal with
this?) Is this necessarily true if Σ is not simply connected?

Exercise 2.13: Show that the quadratic forms on Σ = R
2 defined by

I = cos2 u dx2 + sin2 u dy2

II = cos u sinu
(
dx2 − dy2

)

satisfy the Gauss and Codazzi equations if and only if the function u(x, y) satisfies uxx−uyy = sin u cos u �= 0.
What sorts of surfaces in R

3 correspond to these solutions? What happens if u satisfies the differential
equation but either sinu or cosu vanishes? Does Cartan’s Theorem give anything?

6


